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1. INTRODUCTION

1.1 Need for Analysis of Stressed Power Systems

Present interconnected power systems are much more stressed than ever due to
lack of new transmission facility as well as heavier loading of the transmission net-
work. This stress in a network exhibits several interesting but yet to understand
nonlinear phenomena. This nonlinear complex behavior is not adequately analyzed
with existing tools, and has generated considerable interest among researchers. Sev-
eral nonlinear mathematical tools are being exploited with the existing procedures to
investigate the nonlinear phenomenon in stressed power systems. This dissertation
proposes the use of normal form of vector fields [1, 2], a comparatively new tool in
the domain of power system analysis [3], to study the stability boundary of a stressed
power system.

Earlier, several attempts were made by researchers to approximate the stability
boundary of a power system. In a broad sense these approaches are of two categories:
the first is Lyapunov/energy based, and the second is non Lyapunov type. A rigorous
treatment of Lyapunov type methods is outside the scope of this dissertation and is
available in the literature; see for example {4, 5]. We will only mention the salient
features of some interesting works done in the area of characterization of stability

boundary of a power system. Chiang et al {6] and Zaborzsky et al [7] independently



characterize the stability boundary of a power system. In these works the authors
prove that under certain conditions the stability boundary of a power system is made
of the union of stable manifold of the unstable equilibrium points (UEP) which lie
on the boundary [8]. In other words, the boundary is known if the stable manifold
of the UEP is known. It is extremely difficult, however, to numerically compute
the stable manifold of an UEP for a practical size power network. To overcome
this numerical computation problem, a constant energy surface through the UEP of
interest is considered a good approximation of the stability boundary near that UEP.

In addition to the Lyapunov type method, a few other methods were tried to
approximate the stability boundary of a power system. These methods were suggested
nearly a decade ago; but none has been successfully applied to any practical size power
system. The stability boundary has been approximated by a power series and the
coefficients are calculated by considering the properties of the stability boundary at
a “type-1” UEP [9]. Type-1 UEP is defined in chapter 2. The stability boundary of a
SEP is assumed to be made of a number of disjoint (2rn—3) surfaces in a (2r—2) space
[10], n being number of generators. (2n —3) planes, tangent to the stability boundary
at the type-1 UEP, are constructed to approximate the stability boundary. In other
words, the union of eigenvectors at the type-1 UEP is taken as the approximate
stability boundary. This approximation is, however, a first order approximation. A
power series expansion of the stable manifold of a “hyperbolic” equilibrium point is
derived in [11], which was inspired by Ushiki’s work [12]. Ushiki introduced explicit
globally analytic expressions of unstable manifolds for strictly hyperbolic equilibrium
points. The idea of the hyperplane has been extended to find the second order

approximation to the stability boundary [13]. Recently, artificial neural network



based tangent hypersurfaces have been proposed in [14] to approximate the stability
boundary.

In this dissertation, we suggest a methodology to approximate the stable man-
ifold of an UEP using the normal form theory. The key idea of this method is that
for a linear system the stable manifold is equivalent to the stable eigenspace. The
nonlinear system is transformed to a linear system by a nonlinear coordinate trans-
formation. The stable eigenspace of the transformed linear system is transformed
back to the original coordinates using the nonlinear transformation resulting in an
approximated stable manifold. The objective of this research is to develop new meth-
ods or combinations of methods to analyze, and explain the nonlinear phenomena in

stressed power systems.

1.2 Method of Normal Forms

Normal form theory gives a tool for simplifying the forms of equations to the
simplest possible higher-order terms near their equilibria [1, 2, 15, 16, 17]. The key
idea underlying the normal form method is the use of local coordinate transforma-
tions to simplify the equations describing the system dynamics under considerations.
In other words, with the normal form method a dynamical system is transformed
to the simplest form or so-called norr?zal form system using nonlinear coordinate
transformation. The next chapter describes the normal form method in detail.

The key idea of this dissertation is to approximate the stable manifold of an
unstable equilibrium point using the normal form method. The original nonlinear
system is transformed to a linear system using the nonlinear coordinate transform

around an equilibrium point. Then the stable eigenspace of the transformed linear



system is transformed back to the original system to approximate the stable man-
ifold of the original nonlinear system up to some degree. This approximate stable
manifold is used to find the stability boundary of a stable equilibrium point around
the unstable equilibrium point of interest. Thus, the normal form method enables
us to approximate the stable manifold of this unstable equilibrium point which is
otherwise very difficult to compute numerically for a practical size power system.

This method involves two steps: 1) first to select an unstable equilibrium point
(UEP) which lies on the stability boundary, and 2) the second step is to approximate
the boundary by the second order approximated manifolds. Direct stability analysis
involves calculation of a value of critical potential energy against which transient
stability assessment is made. There are several UEPs on the stability boundary. The
UEP of interest is called the controlling UEP and its computation is one of the key
steps in power system transient stability assessment by the transient energy function
(TEF) method [5]. Thus, we can assume that computation of (at least some of) the
UEPs on the stability boundary is feasible.

The method of normal forms of vector fields is being used to characterize the
dynamic behavior of stressed power systems at Iowa State University [18]. In [19],
this method is applied to characterize the mode-state participation and understand
the relationship between system stressed condition and nonlinearity. The nonlinear
modal interaction and the effect of the interaction on the stressed power system dy-
namic behavior including excitation control performance are discussed in [20]. The
normal form method is also applied to the analysis of the ac/dc power system dynam-
ics [21]. Additional work, using normal forms method, to predict the inter-area type

system separation in a large power system is also undertaken. In all of this work, the



analysis is done around the stable equilibrium point. However, as mentioned above,
this dissertation also contains analysis of a stressed power system around the relevant

unstable equilibrium point.

1.3 Problem Statement

The objective of the present work is to understand “better” the nonlinear phe-
nomenon of stressed power systems. The prediction of the location of boundaries
between groups of machines, during system separation following a large disturbance
is of great interest. A novel method of approximation of the stability boundary of a
stable equilibrium point around an unstable equilibrium point will be presented. The
emphasis is to study the effect of system stress on the stability boundary of a power
system. Analysis of how the shape of the boundary is affected by stress is of interest.
The stability boundary will be approximated using the normal form of vector fields.
The approximated boundary will then be examined to see whether it gives a proper
estimation of critical energy. The behavior of the system trajectory near the UEP

will be investigated to find how the unstable trajectory leaves the boundary.

1.4 Organization of the Dissertation

The organization of this dissertation is as follows; the introduction presents a
motivation, and general overview of the proposed method. Chapter 2, which provides
a review of the related dynamical system, presents the formulation of the problem
including the modeling of the system and also contains the motivation for real normal
form of vector fields. In chapter 3, the general method of approximation of the sta-

bility boundary is presented. First, linear analysis around the unstable equilibrium



point is provided, then it is followed by the method of approximation of the stable
manifold by the real normal form of vector fields. Display of the boundary, compu-
tation of potential energy, and solution steps are given at the end of the chapter 3.
The numerical examples of the proposed method on an 11 generator test system, as
well as the effect of stress on the shape, size of the region of attraction and stability
boundary, and movement of the equilibrium points are described in chapter 4. Chap-
ter 5 describes a conceptual framework to study the mode of system instability as
an application of the approximate boundary. Conclusions and suggestions for future
work are presented in chapter 6. Finally the Acknowledgments, Bibliography are
followed by the appendices described in the following paragraph.

The derivation of Jacobian and Hessian matrices are given in Appendix A. Ap-
pendix B contains the machine data and load flow data for the 11 generator test

system.
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2. MATHEMATICAL FORMULATION

Before presenting the proposed methodology, we will briefly review a few termi-
nology commonly used in characterization of stability boundary of the power systems

[22, 23].

2.1 Review of Related Dynamic Systems

A power system can be described as a nonlinear autonomous system and is

denoted as
z = f(z) (2.1)

where the vector field f maps RN into RN and is continuously differentiable. A
point, Z is called as an equilibrium point (EP) or a fized point of equation (2.1) if
f(&) = 0. The derivative of the function f at Z is known as the Jacobian matrix.
When the Jacobian matrix at an equilibrium point has no eigenvalues with a zero
real part, the equilibrium point is called hyperbolic. If the Jacobian of the equilibrium
point, Z has m eigenvalues with positive real part, it is called a type-m UEP. The
solution curve of equation (2.1) starting initial state z at ¢ = 0 is called a trajectory,
and denoted by ¢(z,.). The stable and unstable manifold, W5(z) and W¥(z) of the

hyperbolic equilibrium point, £ are defined as



WS(2) = {z: é(z,t) “F & as t — oo} (2.2)

WY(3) = {z: §(z,t) F & as t — —oo0} (2.3)

The physical meaning of the stable manifold of an equilibrium point is that if
a trajectory touches a stable manifold, the trajectory converges to the equilibrium
point, whenever the trajectory hits the unstable manifold it goes away from the
equilibrium point when time increases.

For a stable equilibrium point (SEP), there is a region in the state space from
which all trajectories converge to zs as t — oo and this region is known as region of
stability of zs and is denoted by A(zs). The stability boundary is the boundary of
the region of stability, is denoted by JA(zs).

For a linear system, stable eigenspace is equivalent to stable manifold. But for a
nonlinear system stable eigenspace is a linear approximation to stable manifold and
the former is tangent to the latter at the equilibrium point. This can be explained
with Figure 2.1. With this introduction, we now formulate the problem to be studied

in this work.

2.2 Machine and Load Model

We consider the classical model of multimachine system. Loads are treated as
constant impedances and the system is reduced to the internal machine buses. The

equation of motion can be written as the state-space equations [24].

5;- =w; for t=1,..,n
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Figure 2.1: Eigenspace and local invariant manifold of a non-
linear system at an equilibrium point, £
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n
= f;(6,w) = = | Pmi — Djw; — B?Gy; — 3. E;E;Y;;cos(8
M; j=Lli#j
2.4)
As the synchronism depends on the rotor-angle differences and not on their mag-
nitude, relative angles, and speeds are used as system state variables. Accordingly,

the ntl machine is taken as reference. Now defining,

8in = 6; — 6n and w;,;, = w; —wn the equation (2.4) can be rewritten as

bin = wiyp for i=1,.,n—1
: 1 2 2
Win = M—z (sz - Ei Gii) - m (Pmn - EnGnn)
1 o
—3f | EiBnYin cos (6in — O5n) + Z# E;E;Y;; cos (8;, — 65, — 0;5)
: j=1j#

n—1
= | 2 EjEnYjpcos (§jn +0jp)| —cwin  i=1l..n-1 (23
J

‘th

where, §; is the rotor angle of :** machine

th th

d;y, is the rotor angle of =% machine

th

machine with respect to n*=

machine
-th

w; is the rotor speed of =%

w;p, 1s the rotor speed of %% th

machine with respect to n*% machine

th machine

th

M, is the inertia constant of 2%

machine
-th

D; is the damping constant of ==
P,,; is the mechanical power input to :** machine

E; is the constant voltage behind the direct-axis transient reactance of it machine

G;; is the driving point conductance

Yz] is the modulus of ¢ ] b element of the reduced system admittance matrix
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i is the argument of ¢ ith element of the reduced system admittance matrix

6
c= j%z- is constant for uniform damping. The value of ¢ is taken as 0.1 in this work.
Equation (2.5) represents the swing system. For n generator system, the number of
state variables are 2(n—1). In general, equation (2.5) can be represented by equation
(2.1).

Now we present the formulation for the real normal form transformation [25].

2.3 Real Normal Form of Vector Fields

Expanding equation (2.1) around an equilibrium point we get,

&= Az + Xo(z) + HO.T ze RN (2.6)

and for the & variable, z;
i = Az + ~oT Hiz + HO.T (2.7)
i = Az + 3 .0. .
where,
ik . . ey e . 0 . ey
A; = 1** row of Jacobian matrix A which is given by Z| > Toisan equilibrium
Zo
. 2 ¢

point, and H® = [ag—g-;—] = Hessian matrix. The detail for the derivation of the

Il
Jacobian matrix A and the Hessian matrices H® of the system is given in Appendix

A.

In this formulation, terms higher than second order in equation (2.6) are ne-

glected. We do the similarity transformation using equation (2.8)
z=Ury yE RN (2.8)

Ur is formed from complex right eigenvectors of A, U. From a complex conjugate

pair of eigenvectors corresponding to a complex conjugate pair of eigenvalues of A,
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4

the real and imaginary components are taken separately to form two columns of Ur

matrix. Equation (2.6), after similarity transformation becomes

¥ = Jry + Yo(y) ye RN

th

and for the - mode, assuming it to be a real mode

i = v+ yT -

= Ajyj+ kz IZ Cklykyl

where CJ = zz;N VrT [U HPUr]—[C ) and VT = Ur1

We now introduce nonlinear coordinate transformation
y=2z+h2r(z2) ze RN

If “resonance” conditions are satisfied (see discussion of equation (2.1

get the transformed linear system as

Z'=Jr2

The h2rs are obtained solving the following homological equation,

La h2r = Y2

(2.9)

(2.10)

(2.11)

5) below), we

La is known as Lie (or Poisson) bracket [1] of vector fields Jry and h2r(y), and is

given by
Lah2r(y) = {Dh2r(y)Jry — Jrh2r(y)}

(2.14)
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where Dh2r(y) is the Jacobian matrix of the vector h2r(y).
If we do complex normal form transformation, we can simplify the computation

of h2 coefficients [1] as follows:

. Cc
RO, = —IF (2.15)
J ’\j + A E— A;
In the complex normal form approach, a set of N-dimensional system modes

is said to be resonant of order r (where r is an integer), if A; = Z}’-\_{__l

m j)‘j and
r= Z.‘;-V m; for  =1,..,N; ) being a vector of eigenvalues. The linear operator La
is diagonal. In other words, under resonant condition the linear operator La is not
invertible. It is characterized by ’\j + AL = A; for second-order resonance condition.
In the real normal form transformation, the notion of resonance is the same as far as
the invertibility of the linear operator La of equation (2.14) is concerned. But the
only difference is in the derivation of the condition of resonance as La is not diagonal
(see Section 2.5).

The resonant nonlinear terms of a normal form are those ones that cannot be
eliminated by a nonlinear polynomial change of variable [26]. Technically they are in
the kernel of the adjoint of the homological operator, La.

Linear stable eigenspaces of the “transfomed linear system” of the z system given

by the equation (2.12), are transformed back to z system to approximate the stable

manifolds.

2.4 Motivation of Real Normal Forms

In our work we transform the state variables back and forth from x to z space via

y space. Figure 2.2 corresponds to the case when the conventional complex similarity
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x = Ax + X2 x & R
U vl

y=Jy +Y2 APRGA
h2 Th

z=Jz zZ € CN

Figure 2.2: Complex normal form transformation
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and normal form transformation are performed. We get a point in complex space
when any point in the z space is transformed back to the x space. The problem arises.
when we attempt to connect all the points in x space to approximate the manifold.
and hence the boundary. We alleviate this problem using real form transformation.
Figure 2.3 shows the case for all real transformations.

Let us assume that we approximate the stability boundary around a type-1 UEP.
This GEP has N—1 dimensional stable manifold and 1 dimensional unstable manifold.
The stability boundary around this UEP is made of this N — 1 dimensional stable
manifold. This N — 1 stable manifold will be approximated by using corresponding
stable eigenspace, and normal form transformation.

In this dissertation the region of the stability is approximated by the real normal
form method near the so-called controlling UEP. This is the UEP. the potential
energy of which represents the critical energy for the particular disturbance under

investigation (see chapter 3 of [3]).

2.5 An Example of La for 2 Dimensional System

Let us assume for a two dimensional system we have the Jordan system as given

by

o

Jr = (2.16)

Let y = [y, yQ]T. Eigenvalues of Jr are (¢ £ jv). Let us use second order terms as

2 )
vy 2 5 0 0 0
Hy = span 1 , y1v2 , 2

s 5 i 9
0 0 0 yi Y192 y3

k) ki
5

Now we compute La(.) using the equation (2.14) as follows [17].
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X = Ax + X2 x & RV
U, U'rl

y=Jpy +Y2 ye RY
h2, | | hap

i:Jrz zZ € RN

Figure 2.3: Real normal form transformation
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—vy199
2, 9
Hy1y9 — vy7 + VY5

0 0 0 Kyl +vy2 p v

0
La 5 = ) - 2
Y5 0 2y —vy1 + 1y2 —v p )
2
- VY2
=1 .
—2vy1y9 + 1y5

Now we represent a matrix representation of the linear operator La(.) with the

above expressions

La(.) = (

o
P
-]

N’

0 v 0 2v p -2

\ 0 0 v 0 v ¢
An example of normal form based computation of unstable manifold of an equilibrium

point is discussed below.

2.6 Unstable Manifold by Normal Form Method - An Example

Let us consider the following vector field (page 23 [17]).

Ty = —19+ :c%, (z1,2z9) E RX R

]
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The linear part of (2.18) is given as
A=
0 -1
which has a hyperbolic equilibrium point at (z1,z9) = (0,0). The unstable manifold

of the equilibrium point, (0,0) is given in [17] as

: 1
W(0,0) = {(zl,zQ) e R | o9 = gz%}. (2.19)
Equation (2.19) is graphically shown in Figure 2.4.
Next the unstable manifold of the EP is computed using the normal form method.

Eigenvalues of (2.18) are 1,—1. The matrix of right eigenvectors, U is given as

10
U=
01
Since the system is already in Jordan form (here,J = A), following the notation

used in section 2.3, the system can be written as
. 2
y2 = —yo+yf
Nonlinear coefficients are computed as:
1 _ 30l _ 30l _ 162 _ 102 _
h2{1 = k219 = h259 = h2{9 = h255 =0

2
o2 - G
o+ -%

Hence, the nonlinear transformation is given by

_1
~3
y1 = 21

19
¥y = 22+§z‘1‘ (2.21)
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X2

\ / wu(o,O)

X1

Figure 2.4: Unstable manifold at EP, (0,0)

Now unstable eigenspace in the z-space corresponding to eigenvalue 1 is given by:
E¥(0,0) = {(21,29) € B? | z9 = 0}
Transforming the above relation to the y-space and then to the x-space
;] = 21

T9 =

<~

2 (2.22)

O —

which simplifies to z9 = %x% This can be written as in (2.19). Hence, using
the normal form transformation and associated unstable eigenspace, the unstable

manifold of an equilibrium point is computed.

2.7 Summary

This chapter provides the background materials for the normal form method to

approximate the stability boundary around the UEP of interest. The motivation for
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real normal form method has been discussed. The key idea of normal form method
has been explained. For normal form method several interesting articles are available
in the literature. Authors in [27, 28] provide the basic concept, foundation on the
modern theory of normal forms for nonlinear vector fields. An example of La operator
for real normal form transformation is also presented in this chapter. The concept
of normal form based approximation of invariant manifold is explained with a simple
example in this chapter. The next chapter will present a systematic procedure to

approximate the stability boundary around the UEP of interest.
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3. APPROXIMATION OF STABILITY BOUNDARY

3.1 Linear Analysis around the UEP

Equation (2.1) is expanded at an UEP by Taylor series. The Jacobian of the
Taylor series is used to find the eigenvalues, and eigenvectors. The linear system of
(2.1) is given by

z= Az (3.1)

Matrix Ais N x N. If A has N distinct eigenvalues then it will also have N corre-
sponding linearly independent N x 1 right eigenvectors U;, ¢ = 1, N and N x 1 left

eigenvectors V;, which are related by the following equations:

AU; =NU; i=1,...,N (3.2)
ATv. = a.v;  j=1,...,N (3.3)
3= 2eeeen .

Let U be a matrix of right eigenvectors U; and V be a matrix of left eignevectors,

then we have the following relationship:
vIv=1y (3.4)

where Iy is N x N identity matrix. The so-called participation factor [29], p;j, is

given by,

pij = VijUsj (3-5)
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Physically the participation factor P;j gives a measure of the participation of

itk state variable in the ] k mode.

3.2 Coefficient of Curvature

Let us consider 2 = {0,..,Z;,...,0} be any point in the z-space, where :::7 is any

constant number, say 1.0. This point can be transformed to y-space viay = z+h2r(2)
as § = {y1,.....y N} where
N N |
2D Z 2% k% i=LN (3.6)
j=1k=j
Further substitution of £ gives:
—h2 ]]} ,z;é], i=1,N

(3.7

-

C = 9] 22
¥j = % + h2rj;Z;

When we transform back g to the x-space via z = Ury we get & which can be written

In compact form we can write

- - N. -2
Z; =Ur;jZ5 + (Urilhz}‘jj + .o+ Urs NR27 §5)35 (3.8)

= Urz] ] +F2]z] N 1= 1,...,N
where T [U7-21h27.].7 + .+ Uerh..;NJJ] From equation (3.8), we get

2
%% _or,
32

(3.9)

From the above expressions, we can correlate any particular state variable Z; to the

curvature which is given by A2r. The main point is that instead of using only A2,
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we can use the sum of the product given by I'; j to find how the curvature is reflected

in the it® state variable, £; due to the jth mode. The product as mentioned will be

used as a measure to indicate the curvature along a system variable direction.
Hence, a new parameter I' is used to define a relationship between the state

variable ¢ and the curvature due to mode j:

N
Iy = 21 Uriph2f s (3.10)
The way the above formulation is made is to find a relation between a state
variable ¢ and a mode j. It is also possible to find a new parameter 1";'- k to find a
relation among a state : and two modes j and k. The idea for this derivation is as
follows. In the previous formulation, only one component in a particular direction in
the z-space is considered. As an example, for a vector {0,0.....,2,...,0} in the z-space,

r; j is computed. Now considering all nonzero elements in any particular direction,

we have
N
z;= Y Urijy; (3.11)
J=1
Where Y; is given by
N N .
yj =z + Z Z h2r 11212 (3.12)
k=11=k
Hence, we get z; as
N N N N .
z; = z Uriij + Z UTz'j Z Z h2=,7-klzkzl (3.13)
J=1 J=1 k=11=k

From equation (3.13) the following parameter is derived to find a relation among a
state z and two modes j and k as follows.

i 92a;
Tk 8202,

(3.14)
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The above expression can be written explicitly in terms of A2 and Ur. From

equation (3.13) the following relation among a state ¢ and two modes j and k is

obtained: . N
0 z,; !
=2 Z Ur;1h2r ;1 (3.15)
02,0z}, = J
Hence,
N
3 r l
l“;-k = 121 brilh2rjk (3.16)

3.3 Approximation of the Manifold of the UEP

As the system represented by equation (2.12) is linear and diagonal, the eigen-
vector corresponding to the system is obtained as a canonical set of vectors.

For the normal form system, we get N — 1 dimensional stable manifold, and 1
dimensional unstable manifold associated with the type-1 UEP. This N — 1 stable
manifold is represented by N — 1 straight lines in the z-space. They are given as

[@1,0,...,, ..O]T, [0,a9,0,...., O]T, ..[0,....a;,0, .., O]T, a; is a real number; where ¢ =

‘th

1,..N and i # j; jt mode is unstable. Now if we transform the =% stable eigenvector

to the y coordinate, we get [h2L.a? o+ hoL. h..N 2] . This it2 stable

12 Z’ 1 2’

eigenvector in zi coordinate space can be further tra.nsformed back to the z coordinate

ii(az + h?z ) UNzh2 ]

space as [U12h21 taf

7%
As done for the zf‘i stable eigenvector, we can transform all the N — 1 stable
eigenvectors to the original z coordinate. Thus, we approximate the stable manifold

up to the higher order term retained in the Taylor series expression (second order in

this dissertation).
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3.4 Display of Boundary

Under certain conditions (see [6]) the stability boundary of an SEP is the union of
the stable manifolds of the UEPs on the boundary. Near each UEP an approximation
of the stability boundary can be obtained as follows: compute the normal form at
the UEP (in this work up to ond order); approximate the stable manifold in the
z-space by the stable subspace; transform this subspace using U, and h2r back into
the x-space, i.e., to the machine variables. For a type-1 UEP stability boundary
around the UEP is an (/N — 1) dimensional hypersurface in N dimensional space.
For a large power system, it is not possible to display the boundary in the large
dimensional space. Hence, select a 3 dimensional angular subspace to display the
approximated stability boundary graphically. In most angular directions, the stable
manifold is relatively ‘flat’ i.e. looks like a subspace. The important directions are
those with high I' coefficients, usually they are the variables corresponding to the

advanced machines in the UEP.

3.5 Potential Energy

The system of equations is formulated in synchronous reference frame with the

otk

machine taken as reference. With uniform damping we have 2n —2 state variables
for an n machine system. They are {61, 69y, "w&n—l,nv‘“’lnv --awn—l,n}-

The closed form expression of energy in the center of inertia (COI) reference
frame [5] is used here. Using the linear angle path assumption for the dissipation

terms between a point on the boundary, Gb, and the postfault SEP, §° the potential

energy is given by:



n b n—=1 n b s
Vpp=->_F (Oi - 0;3) -3 3 [Cij(cosﬂz-j - cos&z-j)

-D

626519805 0
Where Iij = l—ab—zTB-SL—-L and P; = Pp,; — EZGj;. To use the energy expression
LY AR

in COI frame, the following relationship is made {30]:

z-jzz-j(sinaﬁ?j — sinff;)] (3.17)

M M- M, 77
6172 1 LM% M]%{ ...... W;l— 01 W
9 n—1
6272 — M7]’L- 1+ T m— 02 (318)
M My M,_1
R R N
bin | | M M I el
1 n—1

In the above expression, 8 is in the COI frame. The approach used is as follows. We
will pick up several points in the z-space on the linear manifold. These points (in the
z-space) are transformed to the x-space (see section 3.3). The points obtained in the

x-space are real. These points will be substituted in the energy expression to find

the energy.

3.6 Computation of Distance

In this dissertation, the distance between a postfault SEP ° and any point 6 on

any manifold as is given by:

N
> (6(:) — 85(5))2

1=1

where N is dimension of the system. The norm defined, as above is known as norm-2.
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3.7 Computational Steps

For any operating condition the following steps are performed to find an approx-
imate estimate of the stability boundary for a power system, near the controlling

UEP.

1. Reduce the power system network to the internal machine buses.

2. Find the controlling UEP using a direct stability program, e.g., the TEF [31],

for a given disturbance.
3. Find the Jacobian and the Hessian matrices at the UEP.
4. Conduct linear analysis to obtain the eigenvalues and eigenvectors.

2nd

5. Do similarity transformation to the order terms.
6. Compute the 22y, and the I coefficients.

7. Approximate the stable manifolds.

8. Project the stable manifolds to the angle subspace, and hence, display the shape

of the approximated boundary.

9. Compute potential energy, and distance of the manifold from the SEP.

The overall approach is summarized in Figure 3.1. It also shows steps involved in
the present methodology for the approximation of stable manifold of the controlling

UEP which is a portion of the boundary.
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Nonlinear Diff Eqn Taylor’s )
x =fi X=AX+X2
x =Hx) Series at an EP
Similarity
Transformation X=
Approx. stable manifolds )
of an UEP of x = f(x) Y=JY+Y2
and local stability boundary Jordan System
UseU Nonlinear
Transformation | Y =Z+h2(Z)
and h2’s
Eigenspace of 7 =17
Transformed System I Linear System

Figure 3.1: Solution steps
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3.8 Summary

This chapter presents computational steps involved in approximating the stable
manifold of a UEP of interest using the real normal form of vector fields. For any
operating condition, we take points ( 3 points are taken here) on each linear manifold.
For the purpose of computing energy and distance, the three points taken are for
a=-1l,a=0,and a =1. a =0, is the controlling UEP itself. For each point (say
a = 1) on any manifold, we compute norm between this point, and the postfault
SEP of the system. We compute potential energy at that point with respect to the
postfault SEP. Note that for the computation of the energy and the norm, each point
in the z-space is transformed back to x-space The next chapter provides numerical

results to the concepts developed in this chapter.
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4. NUMERICAL RESULTS

This chapter contains numerical results on different issues discussed in chapter 3.

The results are presented on the following:

e The effect of fault location, and loading of critical generators, and number
of lines opened to clear the fault, on the system eigenvalues, the interaction

coefficients, h2r and the curvature coefficients, I'.

e The shape of the manifold near the controlling UEP and the size of the region

of stability.

e How the system trajectory approaches and leaves the boundary of the region

of stability.
e The potential energy and the distance of the manifold from the postfault SEP.
e Effect of loading of the critical generators on the behavior of faulted trajectory.

e The behavior of equilibrium points when system is stressed.

4.1 11 Generator Test System

An 11 generator test system is used in this work. The 11 generator system

comprises 55 buses and 183 lines [32]. Figure 4.1 provides a one-line diagram of the
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Figure 4.1:

One-line diagram of 11 generator test system
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11 generator test system. Fault locations are marked with ‘X’ in Figure 4.1. Results

for three disturbances are given here:

o A three-phase fault at bus # 226, cleared at 0.068 second by opening lines

226-145, 144-145, 146-226, and 144-146.

o A three-phase fault at bus # 996, cleared at 0.068 second by opening lines 3-996
(2 lines), 297-996 (3 lines).

e A three-phase fault at bus # 150, cleared at 0.068 second by opening lines
150-458, 150-288, 150-3 (2 lines), and 150-297. and 226-145.

4.2 Simulation of Stress in a System

A power system can become stressed in a variety of ways. They are: heavier
loading of some generators, heavier loading of some portion of the transmission net-
work, and when it is subjected to severe faults. Stress also depends on the location of
fault and the postfault network configurations. This dissertation considers the stress
due to fault location, loading of some generators and the post fault system network.
In this simulation, Case2 is more stressed than Casel and Case3 is more than Case2
and so on.

Table 4.1 contains generations for different operating conditions. This Table
corresponds to faults at bus # 996 and bus # 150. We see that the generation at
generators 3 and 5 is increased to cause more stress in the system. For fault at
bus # 226, the loading at the generators are different as the advanced machines are

different. Table 4.2 contains generations at the critical generators for fault at bus #
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Table 4.1: Loading at the generators, for faults at 996, 150

Gen Casel Case2 Case3 Cased Cased

MW MW MW MW MW
1 6357.5 6357.5 6357.5 6357.5 6357.5
2 1669.4 1669.4 1669.4 1669.4 1669.4
3 2149.2 2499.2 2699.2 2799.2 2949.2
4 500.0 500.0 500.0 500.0 500.0
5 2149.2 2499.2 2699.2 2799.2 2949.2
6 300.0 300.0 300.0 300.0 300.0
7
8
9
0
1

600.0 600.0 600.0 600.0 600.0
700.0 700.0 700.0 700.0 700.0
2827.6 2827.6 2827.6 2827.6 2827.6
5329.5 5329.5 5329.5 5329.5 5329.5
241880.0 240840.0 240410.0 240190.0 239860.0

1
1

Table 4.2: Generation at critical generators, fault at 226

Generator Casel Case2 Case3 Cased Case)
# MW MW MW MW MW

6 200 300 100 350 150

7 500 600 200 650 250

8 600 700 1300 700 1350

226. Generations at the rest of the generators are the same as in Table 4.1 except
for generator 11, which is a slack bus.

Generators where loading is increased are the “critical generators” whose loading
greatly influences stability behavior. These generators are the advanced generators
in the UEP. They are identified by a special procedure used in the TEF method of
direct stability analysis. For a fault at bus # 226 the critical generators are generator
numbers 6,7, and 8; for a fault at bus # 150, or at bus # 996, the critical generators

are numbers 3 and 5.
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For each of the above mentioned cases Taylor series expansion of the system
equations is made at the controlling UEP, and real normal form transformation is

performed.

4.3 UEP Angles and System Eigenvalues

4.3.1 Effect of loading of critical generators

The UEPs for different loading cases for a fault at bus # 226 are presented in
Table 4.3. For each case the advanced generators at the UEP are the same. It means
that the same critical generators appear in all the UEPs but the magnitude of their
angles in the UEP could be different for different cases. Eigenvalues are computed
at the controlling UEP for a 3 phase fault at bus # 226 and are given in Table
4.4. Controlling UEPs for a fault at bus # 996 are given in Table 4.5. The angles
presented in COI reference frame are given in degrees. Tables 4.4 and 4.6 show how

real eigenvalues decrease with increased loading in the system.

4.3.2 Effect of fault location and postfault network

Tables 4.7 and 4.8 present controlling UEP angles and eigenvalues at this UEP
for a 3 phase fault at bus # 150. Casel corresponds to 3 lines removal and Casell to
5 lines removal at fault clearing at same loading condition. It has been observed from
these two Tables that for this 11 generator test system, the system is more affected

by change in loading than by change of postfault system network.
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Table 4.3: Controlling UEPs for a fault at bus 226

Generator  Casel Case2 Case3 Case4  Cased
deg deg deg deg deg
28.962 27.123 26.934 25292 23.463
26.444 24.261 24.023 22.031 19.758
44.952 42504 42.257 40.163 37.811
21.005 18.808 18.576 16.613 14.389
42.484 40.054 39.808 37.717 35.365
145.251 122.636 112.507 111.217 91.347
149.599 125.054 116.655 112.621 94.286

~1 O Ut > WD

8§ 147.909 123.014 132.349 109.635 108.839
9 -6.95 -7.192 -7.192 -T7.569 @ -7.927
10 21.113 19.562 19.562 18.066 16.609
11 -6.509 -5.638 -5.638 -5.117 -4.615

4.4 Nonlinear Interaction Coefficients, h2r

Here, one of the subjects of interest is the h2r(z) part of equation (2.11) in
the normal form transformation. It represents the nonlinear interaction between the
natural modes, and reflects the degree of “curvature” that exists in the normal form
state space as compared to the original state space. This curvature is reflected in the
invariant manifolds, i.e., the more stressed the power network, the more “curved”
some of the manifolds will become. Since the manifolds form the boundary of the
stability region, they present us with an opportunity to study the effect of stress (due
to loading) on the behavior of the stability boundary, (approximated by the normal

form transformation).
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Table 4.4: Eigenvalues at the controlling UEP, fault at bus 226

Casel Case2 Case3 Cased Cased

2.381 1.845 1.829 1.488 -0.050+10.838;

-2.481 -1.945 -1.929 -1.588  -0.050-10.838;
-0.050+2.185;  -0.050+2.468;  -0.050+2.486) -0.050+ 2.660; -0.050+ 9.913;j
-0.050-2.185j -0.050-2.468;  -0.050 -2.486;) -0.050-2.660;  -0.050 -9.913;
-0.0504-10.562; -0.050+10.697; -0.050+10.705; -0.050+10.773; 1.108
-0.050-10.562;  -0.050-10.697;  -0.050-10.705;  -0.050-10.773; -1.208
-0.050+ 9.653; -0.050+ 9.782;  -0.050+9.788j] -0.050+ 9.852j] -0.050+2.832j
-0.050-9.653; -0.050-9.782; -0.050-9.788;  -0.050 -9.852j -0.050-2.832j
-0.050+ 8.725;  -0.050+8.824; -0.050+8.830; -0.050+ 8.886; -0.050+8.940j
-0.050-8.725j -0.050-8.824;j -0.050-8.830;  -0.050 -8.886; -0.050-8.940j
-0.050+8.528;  -0.050+8.676;  -0.050+8.683; -0.050+ 8.758]  -0.050+-8.829;
-0.050-8.528; -0.050-8.676;j -0.050-8.683; -0.050-8.758; -0.050-8.829j
-0.050+7.439;  -0.050+7.512; -0.050+7.517j -0.050+6.209; -0.050+7.606;]
-0.050-7.439; -0.050-7.512j -0.050-7.517j -0.050-6.209; -0.050-7.606j
-0.050+7.118;  -0.050+7.332;  -0.050+7.190; -0.050+6.421j  -0.050+6.276j
-0.050-7.118; -0.050-7.332; -0.050-7.190; -0.050-6.421; -0.050-6.276j
-0.050+6.006;  -0.050+6.1315 -0.050+6.137j  -0.0504+7.562j -0.050 +7.415j
-0.050-6.006; -0.050-6.131; -0.050-6.137j -0.050-7.562; -0.050-7.415j
-0.050+6.043;  -0.050+6.293; -0.050-+6.316] -0.050+7.447; -0.050+6.567j
-0.050-6.043; -0.050-6.293;j -0.050-6.316j -0.050-7.447; -0.050-6.567j
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Table 4.5: Controlling UEPs for a fault at 996

Generator Case2 Case3 Cased

deg deg deg
1 71.941 62.091 54.971
2 66.927 58.826 52.327
3 98.383 93.289 87.846
4 64.458 56.032 49.317
5 96.251 91.175 85.783
6 73.459 66.497 60.791
7 75.252 68.383 62.727
8 73.568 66.629 60.928
9 11.791 6.299 2.959
10 63.243 51.632 44.045
11 -7.874 -6.921 -6.203

Table 4.6: A at the controlling UEP, fault at 996

Case2 Case3 Cased

1 2.165 -0.050 10.323; -0.050+10.403;
2 -2.265 -0.050-10.323; -0.050-10.403;
3 -0.050+10.269; -0.050 +9.685; -0.050+ 9.794;
4 -0.050-10.269; -0.050 -9.685;  -0.050 -9.794;
5 -0.050 +9.542; 1.698 1.251
6  -0.050 -9.542; -1.798 -1.351
7 -0.050 +3.0873 -0.050 +3.229; -0.050 +3.338;j
8 -0.050 -3.087; -0.050 -3.229;  -0.050 -3.338;
9 -0.050 +5.229; -0.050 +5.340; -0.050 +5.470j
10 -0.050 -5.229;  -0.050 -5.340;  -0.050 -5.470;
11  -0.050 +6.246; -0.050 +8.341; -0.050 +8.474j
12 -0.050 -6.246;  -0.050 -8.341j  -0.050 -8.474;
13 -0.050 +8.174] -0.050 +7.945; -0.050 +7.979j
14  -0.050 -8.174;  -0.050 -7.945;  -0.050 -7.979j
15 -0.050 +7.912; -0.050 +7.842; -0.050 +7.899j
16  -0.050 -7.912; -0.050 -7.842;  -0.050 -7.899;
17 -0.050 +7.809; -0.050 +6.700; -0.050 +6.964j
18  -0.050 -7.809; -0.050 -6.700;  -0.050 -6.964;j
19 -0.050 +6.952; -0.050 +6.990; -0.050 +7.018;j
20  -0.050 -6.952j  -0.050 -6.990;  -0.050 -7.018;j
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Table 4.7: Effect of line removal on UEP
Generator Casel Casell
deg deg

1 94.217 93.661

2 84.167 84.838

3 102.439 102.158

4 78.816 79.183

5 99.867 99.798

6 74.731 71.436

7 77.705 74.433

8 76.530 73.253

9 32.163 31.368

10 96.091 95.117

11 -9.729 -9.590

Table 4.8: Effect of line removal on A
Casel Casell

3.01 + 0.00; 3.03 + 0.00;
-3.11 + 0.003 -3.13 + 0.00;
-0.05 + 10.36; -0.05 + 10.37;
-0.05 - 10.36; -0.05 - 10.37;
-0.05 + 9.51j -0.05 +9.56)
-0.05 - 9.51; -0.05 -9.56
-0.05 + 2.925 -0.05 + 2.43;
-0.05 - 2.92j -0.05 - 2.43;
-0.05 + 4.23; -0.05 + 4.31;
-0.05 - 4.23; -0.05 - 4.31;
-0.05 + 5.09j -0.05 + 4.96;
-0.05 - 5.09; -0.05 - 4.96j
-0.05 + 6.83; -0.05 + 6.81;
-0.05 - 6.83; -0.05 - 6.81j
-0.05 + 8.25j -0.05 + 8.25j
-0.05 - 8.25j -0.05 - 8.25j
-0.05 + 7.88; -0.05 + 7.89j
-0.05 - 7.88; -0.05 - 7.89j
-0.05 + 7.81; -0.05 4+ 7.79;
-0.05 - 7.81j -0.05 - 7.79j
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4.4.1 Effect of loading of critical generators

Table 4.9 shows a few of the A2 coefficients for the fault at bus # 226 case. The
magnitude of h2 coefficient is indicative of the amount of the interaction coefficients
caused by the stress in the system. Thus, more stressed the system becomes the
greater the magnitude of h2r; as is shown in columns 4-7 of Table 4.9. We note,
however, that the increase in the magnitude of h2r is not uniform in all directions,
as shown in the last column of Table 4.9. Thus, it appears that the more stressed the
power system becomes, the more curved the boundary of the region of stability, as
indicated by the size of the h2r coefficients. However, the curvature tends to increase

in certain directions (see subsection 4.6.1).

4.5 T Coeflicients

4.5.1 Effect of loading of critical generators

Tables 4.10 and 4.11 contain a few of the curvature coefficients I' for a fault
at bus # 226 and for a fault at bus # 996 for different conditions of stress (due
to loading), respectively. From Tables 4.10 and 4.11 we see that T increases with
increased stress. It is evident that the size of the curvature coefficient I' is higher in

the state variables corresponding to the advanced machines.

4.5.2 Effect of fault location and postfault network

Stress in the system is created by (1) shifting generation to the “advanced ma-
chines”, (2) fault at different locations with varying durations and (3) removing more

lines at fault clearing. But it has been observed that for the present test system, the
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Table 4.9: A few h2; coefficients for a fault at bus 226

Casel Case2 Case3 Case4 Cased

0.054 -0.118 0.120 -0.202 0.001
0.100 0.214 0.219 -0.361  0.000
0.018 0.040 0.041 -0.069 0.000
-0.108 0.235 -0.241 0.403 -0.001
-0.050 -0.107 -0.109 0.180  0.000
0.042 0.064 0.064 -0.076 0.000
-0.166 0.193. -0.194 0.209 0.002
-0.020 0.080 -0.082 0.141 -0.001
-0.018 -0.069 -0.071 0.122 -0.002
-0.068 -0.048 -0.047 0.037 -0.006
-0.135 -0.096 -0.094 0.075 -0.005
-0.069 -0.060 -0.057 0.052 0.003
-0.071  -0.058 -0.060 0.054 0.003
0.032 0.046 0.046 -0.053 0.000
0.031 -0.099 0.101 -0.160 0.001
0.030 0.093 0.095 -0.147 0.001
0.135 0.096 0.094 -0.075 0.005
-0.033 -0.093 -0.097 0.290  0.000
0.001 0.001 -0.001 0.001 0.717
0.002 0.002 -0.002 0.002 0.117
-0.601 0.001 0.001 0.001 -0.052
0.033 0.092 0.096 -0.289  0.000
-0.001 -0.001 0.001 -0.001 0.140
-0.002 -0.002 0.002 -0.002 0.822
0.000 0.000 0.000 0.000 0.061
0.000 0.000 0.000 0.000 -0.359
0.000 0.000 0.000 0.000 0.094
-0.001  0.001 0.001 0.001 0.078
-0.002  0.002 0.002 0.002 0.241
-0.002 -0.002 0.002 -0.002 -0.964
-0.001 -0.001 0.001 -0.001 -0.163
-0.001 0.001 0.001 0.001 0.067
-0.001 -0.001 0.001 -0.001 -0.107
-0.002 -0.002 0.002 -0.002 -0.086
0.000 0.000 0.000 0.000 0.060
0.001 0.001 -0.001 0.001 0.409
0.001 0.001 -0.001 0.001 -0.619
0.001 0.001 -0.001 0.001 0.103
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Table 4.9 (Continued)

k Casel Case?2 Case3d Cased4 Case5

(D@H'

bttt
O UL Ot OO N NN NN O 00~ O,

—

O N NN O NNINNN N

Pt

10 0.000 0.000 0.000 0.000 -0.164
15 0.000 0.000 0.000 0.000 0.081
16 0.000 0.000 0.000 0.000 -0.087

9 0.000 0.000 0.000 0.000 0.164
12 -0.035 -0.009 -0.009 0.112 0.000
11  0.031 0.008 0.008 -0.086 0.000
15 0.015 -0.037 0.061 -0.060 0.000
15 0.004 -0.017 -0.020 0.106 0.000
16 -0.010 -0.016 -0.018 -0.279  0.000
19 0.001 -0.001 0.002 -0.061 0.000
20 0.000 0.002 0.000 0.130 0.000

9 0.000 0.000 0.000 0.000 -0.115
10 0.000 0.000 0.000 0.000 0.098
19 0.001 0.002 -0.005 -0.189 0.000
20 -0.001 -0.003 -0.003 0.160 0.000
20 -0.002 -0.002 -0.004 0.439 0.000
15 0.009 0.017 0.020 0.273  0.000
15 0.000 0.000 0.000 -0.152 -0.004
19 0.001 -0.002 0.002 -0.350 0.000
20 0.004 0.001 0.003 0.423 0.000
19 -0.003 0.001 0.001 -0.745 0.000
20 0.000 0.001 -0.002 -0.262 0.000

9 0.186 0.055 -0.081 0.010 0.000
10 -0.230 -0.067 0.097 -0.013 0.000
15 0.001 0.059 -0.387 0.000 0.000
16 -0.002 -0.119 0.808 0.000 0.000

9 0177 0.048 -0.075 0.012 0.000
15 0.003 0.104 -0.715 0.000 0.000
17 0.000 0.000 0.000 0.000 -0.138
17 0.000 0.000 0.000 0.001 0.129
18 0.0056 0.008 0.133 0.000 0.000
19 0011 0483 0835 0.022 0.000
20 -0.084 -1.641 -2980 0.021  0.000
17 -0.005 -0.008 -0.132 0.000 0.000
19 0.083 1.605 2919 -0.021 0.000
20 -0.003 -0.116 -0.200 -0.004 0.000
19 0.173 -0.175 -0.176 0.000 -0.002
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Table 4.10: A few T';; for fault at bus 226

Casel

Case2

Case3

Cased

Case

AN~ NN AN AN SNSRI OO0 O U R B R R W WWWN NN e

bt
DU B W - O OCWIWOCWK WO W b W

0.010
0.020
0.022
0.011
0.011
0.010
0.022
0.011
0.011
0.010
0.022
0.011
0.011
0.011
0.007
0.006
0.012
0.015
0.003
0.003
0.010
0.006
0.006
-0.003
-0.003
0.006
0.006
0.012
0.015
0.003
0.003
-0.004
-0.005
0.006
0.006
-0.004
-0.004

0.007
0.014
0.015
0.009
0.009
0.007
0.015
0.009
0.009
0.006
0.015
0.009
0.009
0.009
0.021
0.018
0.005
0.007
0.002
0.002
0.007
0.004
0.004
-0.005
-0.006
0.019
0.016
0.005
0.007
0.002
0.002
-0.008
-0.008
0.004
0.004
-0.006
-0.006

0.007
0.013
0.015
0.009
0.009
0.007
0.014
0.009
0.009
0.006
0.014
0.009
0.009
0.009
0.021
0.018
0.005
0.007
0.002
0.002
0.007
0.004
0.004
-0.006
-0.007
0.020
0.017
0.005
0.007
0.002
0.002
-0.010
-0.010
0.004
0.004
-0.006
-0.006

0.005
0.010
0.011
0.008
0.008
0.005
0.011
0.008
0.008
0.004
0.011
0.008
0.008
0.008
0.042
0.035
0.001
0.002
0.001
0.001
0.006
0.004
0.004
-0.012
-0.012
0.040
0.034
0.000
0.002
0.001
0.001
-0.009
-0.009
0.004
0.004
-0.012
-0.011

0.001
0.002
0.002
0.007
0.007
0.002
0.002
0.007
0.007
0.002
0.002
0.007
0.007
0.007
0.000
0.000
0.001
0.001
0.101
0.082
0.004
-0.023
-0.023
-0.015
-0.014
0.000
0.000
0.001
0.001
0.100
0.081
0.002
0.002
-0.023
-0.023
-0.015
-0.015
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Table 4.10 (Continued)

i j Casel Case2 Case3 Cased Case5
8 2 0.006 0.018 0.018 0.035 0.000
8 3 0.012 0.006 0005 0.001 0.001
8 4 0.015 0.007 0.007 0.002 0.001
8 5 0.003 0.002 0.002 0.001 0.106
8 6 0.003 0002 0.002 0.001 0.086
8 17 0.006 0.004 0.004 0.004 -0.022
8 18 0.006 0.004 0.004 0.004 -0.021
8 19 -0.004 -0.006 -0.006 -0.012 -0.015
8 20 -0.004 -0.006 -0.006 -0.012 -0.015

10 3 0.011 0.008 0.008 0.006 0.001
10 4 0.019 0.013 0.013 0.010 0.001
11 5 0.000 0.000 0.000 0.000 0.014
11 6 -0.001 -0.001 0.000 0.000 -0.011
12 5 0.000 0.000 0.000 0.000 0.017
12 6 -0.001 -0.001 -0.001 -0.001 -0.013
13 5 -0.002 -0.002 -0.002 -0.002 0.020
13 6 0.000 0.000 0.000 0.000 -0.016
14 1 -0.014 -0.012 -0.012 -0.005 0.000
14 2 0.013 0.012 0.012 0.005 -0.001
15 1 -0.015 -0.012 -0.012 -0.003 -0.003
15 2 0.014 0.011 0.011 0.004 -0.001
16 1 0.03¢ 0.076 0.076 0.125 0.000
16 2 -0.032 -0.069 -0.069 -0.112 0.000
16 5 0.000 0.000 0.000 0.000 0.224
16 6 0.000 0.000 0.000 0.000 -0.197
17 1 0.031 0.071 0.073 0.120 0.000
17 2 -0.028 -0.064 -0.065 -0.107 0.000
17 5 0.000 0.000 0.000 0.000 0.222
17 6 0.000 0.000 0.000 0.000 -0.195
18 1 0.034 0.076 0.079 0.125 0.000
18 2 -0.031 -0.069 -0.071 -0.111 0.000
18 5 0.000 0.000 0.000 0.000 0.236
18 6 0.000 0.000 0.000 0.000 -0.207
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Table 4.11: A few I"z-j for fault at 996
i j Case2 Cased3  Cased
1 5 -0.002 0.024 0.059
2 5 -0.001 0.019 0.052
3 5 -0.002 0.023 0.063
3 6 -0.002 0.020 0.052
4 5 -0.001 0.021 0.056
5 5 -0.002 0.023 0.062
5 6 -0.002 0.020 0.051

10 5 -0.002 0.026 0.060
10 6 -0.002 0.022 0.050
11 5 0.000 0.080 0.147
11 6 0.000 -0.073 -0.131
12 5 0.001 0.065 0.130
12 6 0.000 -0.058 -0.115
13 5} 0.001 0.080 0.157
13 6 0.001 -0.072 -0.139
14 5 0.005 0.072 0.141
14 6 0.007 -0.065 -0.125
15 5  0.001 0.078 0.155
15 6 0.001 -0.070 -0.137
16 5 0.000 0.035 0.085
16 6 0000 -0.031 -0.074
17 5  0.000 0.033 0.082
17 6 0000 -0.029 -0.071
18 5  0.000 0.035 0.085
18 6 0000 -0.031 -0.074
19 5 -0.001 0.040 0.068
19 6 -0.001 -0.036 -0.061
20 1 0.056 0.004 0.004
20 2 -0.052 0.004 0.004
20 5 -0.001 0.088 0.150
20 6 -0001 -0.079 -0.134
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effect of loading the generators has more effect on the 22 and T coefficients than the

number of line clearing conditions.

4.6 Shape of Manifold Near the UEP and Size of the Region of Stability

Stable manifold of the controlling UEP in the x-space is computed from the lin-
ear stable manifold of the z-system of (2.12). This linear manifold is then transformed
back to the y-space using the equation (2.11). As (2.11) is nonlinear (quadratic), the
linear manifold in the z-space becomes parabolic in the y-space and also parabolic
in the x-space as the transformation from y to x is linear. Thus, the stable mani-
fold in the x-space is approximated up to 9nd order using 974 order normal form

transformation.

4.6.1 Effect of loading of critical generators

Figure 4.2 shows portion of the stability boundaries with the corresponding SEPs
for a fault at bus # 996; three different loading cases are shown. The boundary has
been projected to the angle subspace of machines 1, 2 and 3. In Figure 4.3 the same
boundary is projected to the angle subspace of generators 3, 1 and 5. We clearly
see that the boundaries are more curved in the advanced machines directions (here
machine 3 and machine 5). Figure 4.4 depicts stability boundaries for a fault at bus
# 150. As for the fault at bus # 996, it is clearly seen that the region of stability is
reduced with the increase in system stress due to loading [33]. This is also true for

the fault at bus # 150.
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4.7 Trajectory Behavior Near the Boundary of the Region of Stability

Figure 4.5 shows how the postfault trajectory approaches the stability boundary
depending on the clearing time. If the fault is cleared before the critical clearing the
postfault trajectory returns to the SEP and it follows the unstable manifold within
the region of attraction. In Figure 4.5, the trajectory leaves the region of attraction
for a clearing time of 0.064s whereas it is stable for 0.048s clearing. Figures 4.6 and

4.7 display similar phenomenon in two dimensional subspace.

4.7.1 Behavior of system trajectory near the UEP

Figure 4.8 explains the behavior of the faulted trajectory near the UEP. Figure
4.8 corresponds to equivalent one machine connected to infinite bus system. Figure
4.8.a depicts phase portrait of the system. The faulted trajectory leaves the region of
stability depending on the time of fault clearing. In other words, the trajectory leaves
the region of the stability when the fault is cleared after the critical clearing time. It
is clear in Figure 4.8.c that the unstable trajectory leaves the boundary and follows
the unstable manifold of the UEP, and that the stable trajectory follows the stable
manifold near the UEP and then unstable manifold inside the region of stability of

the SEP.

4.7.2 How the faulted trajectory leaves the boundary

Figures 4.9 and 4.10 show the effect of loading on the behavior of trajectory.
They show how the trajectory leaves the boundary at higher loading, for the same
clearing time, and the same fault. The trajectories leave at different edges of the

boundary when the faults are cleared after the critical clearing time.
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4.8 Potential Energy and Distance of Manifold from the Postfault SEP

4.8.1 Effect of loading of critical generators

The distance between a postfault SEP, §° and any point, # on any manifold is

given by the norm-2, defined as:

J D o(6(2) - — 65(:))2 (4.1)

where N is the dimension of the system. Norm-2 is also known as the Euclidean
distance. For the computation of the energy and norm-2 we take a point on any stable
eigenvector direction at a distance a from the UEP. Then that point is transformed to
the y-space and then to the x-space, then potential energy and norm-2 are computed
using (3.17) and (4.1).

Tables 4.12 and 4.13 are for Case2 and Case4 respectively for a fault at bus #
996. From this data, it is observed that the potential energy is almost constant at
lower stress. In Table 4.12, the first row corresponds to unstable real eigenvalue and
the second row corresponds to real stable eigenvalue for Case2. For Case4, the fifth
row and sixth row of Table 4.13 correspond to real eigenvalues. The potential energy
varies appreciably for a higher stress as given in Table 4.13 but the change is more
along the manifold corresponding to real eigenvalues.

Reference [34] provides a graphical analysis of the potential energy surface around
the UEP of a stressed power system. It has been shown that the potential energy
surface around a UEP may be “very steep” in certain directions and “shallow” in
other directions. The results presented in this chapter support the above mentioned

observations.



Table 4.12: Potential energy and norm for a fault at bus 996, Case2
Potential Energy Norm-2
a=-1 a=0 a=1 a=-1 a=0 a=1
2.4016 2.6547 2.4375 2.2761 2.5209 3.1316
2.4135 2.6547 2.4603 2.2933 2.5209 3.1132
2.7467 2.6547 2.8571 2.5060 2.5209 2.5180
2.6379 2.6547 2.6374 2.7007 2.5209 2.7004
2.8184 2.6547 2.6035 2.5450 2.5209 2.4910
2.6523 2.6547 2.6543 2.7078 2.5209 2.7034
3.1635 2.6547 2.5188 2.4420 2.5209 2.5906
2.6453 2.6547 2.6557 2.6774 2.5209 2.6776
2.1115 2.6547 3.6745 2.5227 2.5209 2.4934
2.6651 2.6547 2.6500 2.6877 2.5209 2.6897
2.4358 2.6547 3.4456 2.4794 2.5209 2.5521
2.6845 2.6547 2.6763 2.6957 2.5209 2.7016
2.9596 2.6547 2.9479 2.4662 2.5209 2.5292
2.6464 2.6547 2.6464 2.6858 2.5209 2.6860
2.7265 2.6547 3.0691 2.5110 2.5209 2.5255
2.6499 2.6547 2.6477 2.7044 2.5209 2.7036
3.2439 2.6547 2.3844 2.5240 2.5209 2.4945
2.6382 2.6547 2.6436 2.6949 2.5209 2.6965
2.7884 2.6547 2.8302 2.5025 2.5209 2.5424
2.6519 2.6547 2.6516 2.7057 2.5209 2.7068
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Table 4.13: Potential energy and norm for a fault at bus 996, Case4

Potential Energy Norm-2
a=-1 a=0 a=1 a=-1 a=10 a=
0.2635 0.1176 0.3112 0.8743 0.9142 0.8887
0.1103 0.1176 0.1101 1.3265 0.9142 1.3263
0.1166 0.1176 0.1166 1.3390 0.9142 1.3424
0.2302 0.1176 0.1479 0.9306 0.9142 0.8772
-0.2978 0.1176 0.0548 2.0602 0.9142 0.5944
0.0544 0.1176 -0.2262 0.6419 0.9142 1.9998
0.2737 0.1176 0.4386 0.9263 0.9142 0.8609
0.1199 0.1176 0.1173 1.2831 0.9142 1.2795
0.6947 0.1176 0.1106 0.8434 0.9142 0.8761
0.1084 0.1176 0.1133 1.2956 0.9142 1.2957
0.5329 0.1176 0.4872 0.8226 0.9142 0.8707
0.1140 0.1176 0.1143 1.2992 0.9142 1.3017
0.4619 0.1176 0.2453 0.9119 0.9142 0.8783
0.1124 0.1176 0.1176 1.3298 0.9142 1.3314
0.1699 0.1176 0.4697 0.8661 0.9142 0.9037
0.1146 0.1176 0.1127 1.3241 0.9142 1.3236
0.5205 0.1176 0.2836 0.9319 0.9142 0.8776
0.1233 0.1176 0.1252 1.3401 0.9142 1.3281
0.2739 0.1176 0.2898 0.8951 0.9142 0.9344
0.1167 0.1176 0.1166 1.3397 0.9142 1.3418




4.8.2 Effect of fault location

Tables 4.14 and 4.15 contain potential energy and norm-2 for a 3 phase fault at
bus # 150. For a fault at bus # 226 potential energy and norm-2 are tabulated in
Tables 4.16 and 4.17.

Table 4.14: Potential energy and norm for a fault at bus 150, Case2

Potential Energy Norm-2
a=-1 a=10 a=1 a=-1 a=0 a=
4.3944 4.3326 4.5507 2.9701 2.9834 2.9821
4.3156 4.3326 4.3149 3.1370 2.9834 3.1369
4.5139 4.3326 4.2618 3.0062 2.9834 2.9555
4.3302 4.3326 4.3315 3.1429 2.9834 3.1394
3.9856 4.3326 4.2003 2.7462 2.9834 3.5362
4.2179 4.3326 4.0008 3.5204 2.9834 2.7609
3.8563 4.3326 5.0268 3.0672 2.9834 2.9043
4.3043 4.3326 4.3040 3.1117 2.9834 3.1050
4.3600 4.3326 4.3600 3.1308 2.9834 3.1233
3.6667 4.3326 5.4718 2.9914 2.9834 2.9534
5.2470 4.3326 3.9705 3.0177 2.9834 2.9399
4.3525 4.3326 4.3632 3.1372 2.9834 3.1317
4.4844 4.3326 4.4780 3.0052 2.9834 2.9667
4.3257 4.3326 4.3262 3.1411 2.9834 3.1422
4.2589 4.3326 4.7619 2.9362 2.9834 3.0052
4.3295 4.3326 4.3314 3.1302 2.9834 3.1311
5.0848 4.3326 4.0706 2.9606 2.9834 2.9673
4.3162 4.3326 4.3225 3.1221 2.9834 3.1261
4.5799 4.3326 4.5757 2.9877 2.9834 2.9806

4.3221 4.3326 4.3222 3.1422 2.9834 3.1424




Table 4.15: Potential energy and norm for a fault at bus 150, Case3
Potential Energy Norm-2
a=-1 a=0 a=1 a=-1 a=0 a=1
0.4270 0.3157 0.5218 1.2443 1.2785 1.2623
0.3056 0.3157 0.3052 1.5982 1.2785 1.5978
0.3246 0.3157 0.4460 1.2454 1.2785 1.2956
0.3147 0.3157 0.3138 1.6103 1.2785 1.6121
0.0158 0.3157 0.2001 2.2348 1.2785 0.9736
0.0615 0.3157 0.2026 2.1918 1.2785 1.0086
0.7226 0.3157 0.3076 1.2459 1.2785 1.2699
0.3015 0.3157 0.3094 1.5308 1.2785 1.5383
0.1681 0.3157 1.0424 1.2541 1.2785 1.2179
0.3153 0.3157 0.3090 1.5701 1.2785 1.5713
0.6652 0.3157 0.6133 1.2650 1.2785 1.2039
0.3128 0.3157 0.3131 1.5820 1.2785 1.5801
0.2428 0.3157 0.7808 1.2222 1.2785 1.2622
0.3071 0.3157 0.3039 1.5890 1.2785 1.5828
0.5759 0.3157 0.5782 1.2772 1.2785 1.2699
0.3117 0.3157 0.3117 1.6094 1.2785 1.6097
0.7639 0.3157 0.4383 1.2978 1.2785 1.2472
0.3249 0.3157 0.3274 1.6112 1.2785 1.6016
0.4615 0.3157 0.4935 1.2567 1.2785 1.2998
0.3132 0.3157 0.3128 1.6096 1.2785 1.6116




Table 4.16: Potential energy and norm for a fault at bus 226, Casel

Potential Energy Norm-2
a=-1 a=0 a=1 a=-1 a=0 a=1
6.0090 5.9296 5.3753 3.7217 3.9803 4.4721
5.4059 5.9296 6.0129 4.4584 3.9803 3.7354
7.1591 5.9296 5.2585 4.2555 3.9803 3.7873
6.0339 5.9296 6.0800 4.1146 3.9803 4.1265
6.1431 5.9296 6.1205 3.9904 3.9803 3.9884
5.9508 5.9296 5.9509 4.1108 3.9803 4.1107
5.9661 5.9296 6.0637 3.9781 3.9803 3.9948
5.9432 5.9296 5.9426 4.1070 3.9803 4.1079
6.4244 5.9296 6.4114 4.0138 3.9803 3.9955
5.9924 5.9296 5.9924 4.1244 3.9803 4.1251
6.2983 5.9296 5.9472 3.9987 3.9803 3.9871
5.9589 5.9296 5.9610 4.1129 3.9803 4.1135
6.1603 5.9296 6.3154 3.9812 3.9803 4.0011
5.9526 5.9296 5.9515 4.1097 3.9803 4.1106
5.9288 5.9296 5.9288 4.0936 3.9803 4.0934
6.1772 5.9296 6.1731 3.9797 3.9803 3.9685
6.2307 5.9296 6.2591 3.9814 3.9803 4.0160
5.9726 5.9296 5.9724 4.1162 3.9803 4.1153
6.0651 5.9296 6.0905 3.9384 3.9803 4.0156

5.9289 5.9296 5.9286 4.0950 3.9803 4.0948
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Table 4.17: Potential energy and norm for a fault at bus 226, Case3

Potential Energy Norm-2
a=-1 a=0 a=1 a=-—1 a=10 a=
0.2669 0.0712 0.2608 0.9251 0.9172 0.9229
0.0750 0.0712 0.0751 1.3554 0.9172 1.3555
0.1648 0.0712 0.1376 0.9344 0.9172 0.9157
0.0737 0.0712 0.0738 1.3564 0.9172 1.3535
-0.3531 0.0712 0.0325 2.0973 0.9172 0.5523
-0.2825 0.0712 0.0330 2.0299 0.9172 0.6020
0.5284 0.0712 0.1158 1.0917 0.9172 0.8278
0.0753 0.0712 0.0829 1.3162 0.9172 1.3039
0.5279 0.0712 0.5276 0.9249 0.9172 0.9468
'0.0812 0.0712 0.0812 1.3601 0.9172 1.3614
0.2996 0.0712 0.2073 0.9326 0.9172 0.9215
0.0754 0.0712 0.0759 1.3531 0.9172 1.3556
0.3430 0.0712 0.3836 0.9245 0.9172 0.9467
0.0754 0.0712 0.0750 1.3529 0.9172 1.3613
0.3462 0.0712 0.3575 0.9177 0.9172 0.9566
0.0772 0.0712 0.0772 1.3529 0.9172 1.3521
0.3715 0.0712 0.3124 0.8923 0.9172 0.8802
0.0699 0.0712 0.0711 1.3196 0.9172 1.3261
0.2417 0.0712 0.2261 0.9385 0.9172 0.8659
0.0709 0.0712 0.0710 1.3308 0.9172 1.3305
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4.9 Equilibrium Points When System is Stressed

Table 4.18 shows equilibrium points (EP)s for the three loading conditions.
Columns 2 and 6 correspond to loading Case3 and columns 3 and 5 correspond to
loading Cased as given in Table 4.1. Generations at generators 3 and 5 are increased
from 2699 MW each in Case3 to 2799 MW each in Case4. Generations in Case5 are
2899 MW each at generators 3 and 5. The generations at the rest are held constant
except the generator 11, which is a slack bus. Eigenvalues at these EPs are computed

e 274 column

and are used to classify these EPs as SEP or UEP. As we move from th
to the 37¢ column, the angles in the SEPs increase; whereas from the 6tk column
to the 4t column the angles in the UEPs decrease. The point is that we clearly
see that the SEP and UEP angles tend to move toward each other, and for higher
loading the SEP and UEP may combine and the SEP disappears. In Table 4.18, the
absence of SE Py appears to be due to the fact that it coalesced with the UEPs.
Berggren et al [35] developed a conceptual framework for discussing equilibrium
points, based on simple topological arguments. The authors analyzed certain funda-
mental properties of SEPs and UEPs in stressed power systems. In addition, they

also show that some of the UEPs can disappear when the loading of the system

increases.

4.10 Summary

This chapter presents numerical results of the proposed methodology to the 11
generator test system. The relation between the system stress due to loading and

the boundary of the region of stability has been shown graphically. The shape of the
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Table 4.18: Equilibrium points, fault at bus 996

Generator SEP3 SEPy UEP; UEP UEP;
deg deg deg deg deg

61 34.4212 37.3540 46.9895 55.7975 62.0920
6o 30.8910 34.3678 44.7318 53.1944 58.8276
63 62.2416 67.6700 80.9804 88.8224 93.2862
64 27.4015 30.9128 41.4853 50.1995 56.0321
65 60.3078 65.7344 78.9913 86.7519 91.1763
6 41.4015 44.6653 54.0756 61.5868 66.4975
67 43.4143 46.6889 56.0770 63.5236 68.3807
6g 41.5124 44.7932 54.2287 61.7297 66.6306
6g -4.2309 -3.6969 -0.5210 3.2515 6.2993
610 25.27T13 27.4730 35.9139 44.7984 51.6313
617 -3.9548 -4.3071 -5.3849 -6.2932 -6.9210

region of attraction of a power system for different degrees of stress has also been
displayed. In addition, the behavior of the system trajectory near the UEP and as it
leaves the boundary is studied. It is shown that when a faulted trajectory leaves the
region of attraction, it follows the unstable manifold of the UEP.

It has been observed that the variation in magnitude of h2r with the increase
in stress due to loading is not uniform in all the directions; it is more curved in the
direction of the machine variables whose angles are advanced in the UEP. The real
eigenvalue decreases with the increase in stress. The effect of stress due to more lines
removal at fault clearing is found to have less effect than loading on h2p, T.

It has been demonstrated that the stability region shrinks with stress and that
the SEP and UEP tend to come close to each other. At higher stress the SEP and
UEP may combine and the SEP disappears, as for Case5 in Table 4.18.

Potential energy on the approximate boundary has also been computed. It is
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observed that the potential energy is almost constant in all directions around the
UEP at lower stress condition but at higher stress it tends to change. It changes

appreciably along the directions of the manifolds associated with real eigenvalues.
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5. MODE OF SYSTEM INSTABILITY

The three previous chapters presented the formulation, methodology and numer-
ical results of approximating stability boundary around the controlling UEP using the
real normal forms of vector fields. This chapter will examine how this approximate
boundary can be used to study machine separation from the system, when instability

occurs.

5.1 Display of Trajectory to the Boundary

Chapter 4 contains numerical results of the approximate stability boundary
around the controlling UEP for different operating conditions. Figures 4.9 and 4.10
show how trajectories behave near the UEP. They also show that the postfault sys-
tem trajectories leave at different edges of the boundary for different clearing times,
if any trajectory leaves the boundary. We now study this behavior to see if it can
help explain the mode of machine separation from the system.

The postfault system can be written as equation (2.5). The reduced admittance
matrix of the postfault system is obtained by running TEFV3.0 [31], a direct stability
program. This system is integrated using a Runge-Kutta routine [36]. The condition
at fault clearing is taken as initial condition for the purpose of integration. These

integration results are also compared with EPRI’s ETMSP [37] solution, a time simu-
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lation package for transient stability analysis. The next section discusses the scheme

to explain the mode of system separation.

5.2 Mode of System Separation

The steps involved in studying the mode of system separation using the approx-

imate boundary and postfault system trajectory are as follows.
1. First, the stability boundary around the UEP is drawn, as done earlier.
2. Each manifold of the boundary is labeled.

3. The postfault system is integrated using the integration routine mentioned in

section 5.1.

4. These faulted trajectories are drawn to this boundary for different initial con-

ditions (depending on the fault clearing times).

'U‘

The boundary is projected to a 2 dimensional angle subspace to show how the
faulted trajectories cross the boundary, and the postfault trajectories are also

projected to this angle subspace with different initial conditions.

It is expected that the faulted trajectories will leave the stability boundary at different
points depending on the initial conditions.

Figure 5.1 presents a representative result to show how the postfault system
trajectories leave the stability boundary for different clearing times. This figure cor-
responds to a 3 phase fault at bus # 150 for a loading Case5. The stability boundary
around the controlling UEP and the postfault system trajectories are projected to

the angle subspace of machines 5 and 1. Not all the manifolds are labeled in this
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Figure 5.1: Faulted trajectories for different clearing times
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figure in order that the figure may not be crowded. Note that, in this dissertation,
the angles in the figures are given in radians. It is clearly seen the trajectories leave
the boundary at different edges of the boundary depending on fault clearing time.
For a clearing time of 0.028s, it leaves at manifold 7 and for a clearing time of 0.048s.
it crosses boundary at manifold 6. As the clearing time increases, the trajectory
appears to leave away from the UEP. The postfault trajectory for a fault clearing at
0.088s, probably leaves the boundary at manifold 11 (extending it) before it crosses
manifold 13.

The crossing of the system trajectory at the edge of the boundary is also com-
puted numerically. However, finding the exact crossing of the trajectory at the bound-
ary is not always possible numerically. As observed in Figure 5.1, the problem is how
to find the multidimensional point where it leaves the boundary when projected in 2
dimensional subspace. To overcome this computational problem, the following step
is performed.

Assuming that the UEP is type-1 for the 11 generator test system, the edges of
the boundary are represented by 19 stable manifolds. Many discrete points are taken
on the manifolds. The postfault trajectory is then computed using an integration
technique. At any instant of time, the Euclidean distance is computed between
the points on the manifolds and the trajectory; the shortest distance is then taken.
This distance shows how far is the trajectory from an edge of the boundary. It also
identifies at, or close to, which manifold the faulted trajectory leaves the boundary.
For an operating condition, the faulted trajectories, its minimum distance from a
manifold and the identification of the manifold will be presented in Tables 5.1, 5.2,
5.3, and 5.4.



Table 5.1:
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Fault at bus 996, Case4, el = 0.028s, only angle components

81,11
deg

62,11
deg

8311 bamr ds11 611 d7n e bo1n b1011 Dist. #
deg deg deg deg deg deg  deg deg rad

32.38
33.22
34.16
35.26
36.53
37.99
39.62
41.40
43.29
45.25
47.22
49.15
51.00
52.72
54.29
55.69
56.93
58.01
58.96
59.80
60.58
61.34
62.10
62.89
63.73
64.64
65.62
66.66
67.76
68.91
70.10
71.32
72.60
73.93
75.35
76.87
78.53
80.38
82.45
84.77
87.39
90.34
97.36

30.99
32.85
34.49
35.92
37.16
38.25
39.24
40.19
41.15
42.18
43.31
44.54
45.88
47.30
48.76
50.22
51.63
52.94
54.12
55.16
56.06
56.84
57.55
58.24
58.97
59.82
60.84
62.08
63.58
65.33
67.34
69.55
71.93
74.41
76.92
79.39
81.77
84.02
86.11
88.05
89.86
91.60
95.17

60.37 24.96 58.09 41.64 43.71 41.79 -2.81 23.76 0.84
6302 2685 61.49 41.92 43.93 42.08 -2.78 23.97 0.77
65.76 28.85 64.91 4221 44.17 4238 -2.74 2424 0.70
68.52 30.91 68.15 42.53 44.44 42.71 -266 2464 0.63
71.25 3299 71.08 4292 44.78 43.10 -2.54 25.20 0.57
73.88 35.03 73.59 43.39 45.19 43.56 -2.35 25.96 0.51
76.36 36.99 75.65 43.96 45.69 44.12 -2.08 26.94 0.46
7860 38.82 77.27 44.63 46.30 44.78 -1.T1 28.18 041
80.56 40.48 78.47 4543 47.02 45.55 -1.22 29.68 0.36
82.16 4195 79.33 46.35 47.88 46.45 -0.61 3143 0.31
8339 43.21 79.95 47.40 48.86 47.47 0.15 3342 0.27
84.22 4427 80.42 4856 49.97 48.60 1.05 35.63 0.22
84.69 45.17 80.83 49.84 51.21 49.86 2.09 38.00 0.19
8486 45.95 81.25 51.23 52.58 51.23 3.27 4049 0.18
8480 46.65 81.72 52.72 54.07 52.71 4.57 43.02 0.18
84.64 47.3¢4 8229 5429 55.66 54.27 5.96 45.53 0.18
84.51 48.06 82.94 5593 57.35 5591 7.41 4796 0.18
8453 4885 83.69 57.63 59.12 57.62 8.89 50.22 0.19
84.82 49.74 84.51 59.37 60.95 59.38 10.34 5226 0.18 1
8547 50.73 85.40 61.14 62.82 61.17 11.73 54.03 0.17
86.52 51.83 86.36 62.92 64.71 62.98 13.01 5548 0.12
87.96 53.00 87.39 64.69 66.61 64.79 14.13 56.59 0.09
80.75 54.22 88.54 66.46 68.50 66.59 15.06 57.36 0.09
9181 5548 89.82 68.19 70.35 68.37 15.74 57.79 0.12
94.05 56.75 9129 69.90 72.16 70.11 16.17 37.92 0.17
9637 58.02 9296 71.56 73.91 71.82 16.33 57.80 0.15
98.67 59.30 94.85 73.18 75.60 73.47 16.20 5748 0.14
10089 60.60 96.95 74.76 77.21 75.07 15.81 57.05 0.13
103.00 61.96 99.24 76.30 78.75 76.62 15.18 56.58 0.13
104.98 63.40 101.65 77.79 80.23 78.12 14.3¢ 56.16 0.14
106.86 64.96 104.14 79.25 81.64 79.57 13.36 55.88 0.17
108.67 66.66 106.64 80.67 82.99 8099 1231 5582 (.19
110.46 68.52 109.07 82.07 84.29 8236 11.28 56.04 0.22
11229 70.53 111.39 83.46 85.57 83.72 10.34 56.62 0.25
114.21 72.67 113.56 84.84 86.82 85.06 9.60 57.58 0.27
116.25 74.92 11559 86.21 88.07 86.40 9.14 58.96 0.29
11842 77.25 11748 8760 89.33 87.74 9.05 60.77 0.31
120.73 79.59 119.28 89.00 90.61 89.10 9.37 63.03 0.31
123.16 81.93 121.06 90.43 91.93 90.48 10.17 65.71 0.30
125.70 84.23 122.90 91.88 93.31 91.90 11.45 68.82 0.29
128.33 86.50 124.88 93.38 94.74 93.38 13.23 7234 0.26
131.04 88.75 127.09 9492 96.24 9491 1548 76.26 0.23
136.74 93.44 13249 98.20 99.50 98.19 21.24 85.28 0.24

DD DN DN DO D OWODOODHITDADDDIDNDNONDIDINITDNIHIHIDNINIOOIIOOD
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Table 5.2: Fault at bus 996, Case4, el = 0.028s, angle and speed components

iy b2y G ban 8511 611 6711 bsnn e bi011 Dist. #
deg deg deg deg deg deg deg deg deg deg rad

3238 30.99 60.37 24.96 58.09 41.64 43.71 41.79 -2.81 23.76 2.12
33.22 32.85 63.02 2686 6149 41.92 4393 42.08 -2.78 23.97 213
34.16 3449 6576 28.85 6491 4221 44.17 4238 -2.74 24.24 208
35.26 35.92 68.52 30.91 68.15 42.53 4444 4271 -266 24.64 1.99
36.53 37.16 T71.25 3299 71.08 42.92 44.78 43.10 -2.54 25.20 1.86
3799 38.25 73.88 35.03 73.59 43.39 45.19 43.56 -2.35 25.96 1.73
39.62 39.24 7636 36.99 75.65 43.96 45.69 44.12 -2.08 26.94 1.60
4140 40.19 7860 38.82 T7.27T 44.63 46.30 44.78 -1.71 28.18 149
43.29 41.15 80.56 40.48 78.47 4543 47.02 4555 -1.22 29.68 1.42
45.25 42.18 82.16 41.95 79.33 46.35 47.88 46.45 -0.61 31.43 140
47.22 4331 8339 4321 79.95 47.40 48.86 4747 0.15 3342 141
49.15 44.54 84.22 4427 8042 48.56 49.97 4860 1.05 35.63 1.46
51.00 45.88 84.69 45.17 80.83 49.84 51.21 49.86 2.09 38.00 1.52
52.72 47.30 84.86 45.95 81.25 51.23 52.58 51.23 3.27 40.49 1.58
54.29 48.76 84.80 46.65 81.72 52.72 54.07 52.71 4.57 43.02 1.62
55.69 50.22 84.64 47.34 82.29 54.29 55.66 54.27 5.96 45.53 1.63
56.93 51.63 84.51 48.06 82.94 55.93 57.35 5591 T.41 4796 1.62
58.01 52.94 84.53 48.85 83.69 57.63 59.12 57.62 8.89 50.22 1.58
58.96 54.12 84.82 49.74 8451 59.37 60.95 59.38 10.34 52.26 1.53
59.80 55.16 85.47 50.73 8540 61.14 62.82 61.17 11.73 54.03 1.50
60.58 56.06 86.52 51.83 86.36 62.92 64.71 6298 13.01 55.48 149
61.3¢4 56.84 87.96 53.00 87.39 64.69 66.61 64.79 14.13 56.39 1.50
62.10 57.55 89.75 54.22 8854 66.46 68.50 66.59 15.06 57.36 1.54
62.89 58.24 91.81 55.48 89.82 68.19 70.35 6837 15.74 57.79 1.59
63.73 58.97 94.05 56.75 91.29 69.90 72.16 70.11 16.17 57.92 1.65
64.64 59.82 96.37 58.02 9296 71.56 73.91 71.82 16.33 57.80 1.71
65.62 60.84 98.67 59.30 9485 73.18 7560 73.47 16.20 57.48 1.78
66.66 62.08 100.89 60.60 96.95 74.76 77.21 75.07 15.81 57.05 1.84 10
67.76 63.58 103.00 61.96 99.24 76.30 78.75 76.62 15.18 56.58 1.86 10
68.91 65.33 104.98 63.40 101.65 77.79 80.23 78.12 14.34 56.16 1.90 10
70.10 67.34 106.86 64.96 104.14 79.25 81.64 79.57 13.36 55.88 1.97 -10
71.32 69.55 108.67 66.66 106.64 80.67 82.99 80.99 1231 55.82 2.06 10
72.60 T71.93 11046 68.52 109.07 82.07 84.29 82.36 11.28 56.04 2.15 10

(o 3 = W W e W W= W > W o W e W= W= W o R o B e R o R e R = B o B B o i o R = R = R o i o o I e )

73.93 7441 11229 70.53 111.39 8346 85.57 83.72 1034 5662 226 6
7535 76.92 114.21 72.67 113.56 84.84 86.82 85.06 9.60 57.58 233 6
76.87 79.39 116.25 74.92 11559 86.21 88.07 86.40 9.14 58.96 241 6
78.53 81.77 11842 77.25 11748 87.60 89.33 87.74 9.05 60.77 253 6
80.38 84.02 120.73 79.59 119.28 89.00 90.61 89.10 9.37 63.03 268 6
8245 86.11 123.16 81.93 121.06 90.43 91.93 90.48 10.17 6571 286 6
84.77 88.05 125.70 84.23 122.90 91.88 93.31 91.90 1145 6882 3.08 6
87.39 89.86 128.33 86.50 124.88 93.38 94.74 93.38 1323 7234 334 6
90.34 91.60 131.04 88.75 127.09 94.92 96.24 9491 1548 76.26 363 18
97.36 95.17 136.74 93.44 13249 98.20 99.50 98.19 21.24 85.28 4.28 18
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Table 5.3: Fault at bus 996, Case4, el = 0.088s, only angle components
b1 benn b3 bamn b S bz g1 e o1 Dist #
deg deg deg deg deg deg deg deg deg deg rad

3483 37.03 68.40 30.67 68.36 42.50 4442 42.70 273 2436 063 6
3744 4293 76.47 36.45 78.38 4343 45.19 43.67 -262 25.10 049 6
4038 4839 84.41 4223 8762 4450 46.08 44.78 -242 26.14 047 6
43.74 53.34 92.15 47.96 95.82 45.79 47.18 46.08 -2.10 2758 050 9
47.60 57.77 99.64 53.58 102.90 47.34 4853 47.63 -161 2955 043 9
51.94 61.73 106.81 59.02 108.88 49.21 50.19 49.48 -091 3212 047 9
56.75 65.29 113.62 64.23 11389 5143 5219 51.66 005 3537 057 9
61.99 68.55 120.00 69.17 118.09 54.03 54.56 54.20 131 393¢ 070 9
67.59 71.63 125.87 73.82 121.71 57.01 57.35 57.12 291 4406 082 6
73.50 7469 131.20 78.20 12496 60.39 60.55 60.42 489 4954 081 6
79.65 77.87 135.95 82.35 128.06 64.16 64.17 64.11 728 5578 077 6
86.00 81.30 140.11 86.36 131.23 6831 6823 68.18 1009 6278 072 6
92.53 85.13 143.74 90.33 13463 7284 7271 7264 1335 7050 065 6
99.24 89.46 146.92 9442 13841 77.74 7762 7749 17.05 7894 0.58 6
106.15 94.39 149.82 98.79 142,67 83.00 82.93 82.72 21.20 88.11 033 6
113.3¢ 99.98 152.68 103.61 147.45 88.62 88.65 88.3¢ 2581 98.01 0.69 6
120.90 106.28 155.79 109.06 152.81 94.61 94.76 94.3¢ 30.89 108.71 095 6
128.96 113.32 159.51 115.31 158.76 100.96 101.27 100.75 36.48 12026 130 6
137.70 121.14 164.24 122.52 165.36 107.71 108.17 107.38 42.63 132.78 1.70 6
147.33 129.78 170.37 130.83 172.70 114.89 11547 11485 4942 14643 215 6
158.12 139.30 178.29 140.39 180.95 122.54 123.22 122.62 57.00 161.36 2.66 6
170.36 149.80 188.31 151.34 190.35 130.74 13145 130.95 65.55 177.79 3.24 6
184.37 16145 200.71 163.83 201.24 139.57 140.23 139.90 75.34 19590 3.90 6
200.46 174.45 215.64 178.08 214.04 149.15 149.65 149.59 86.75 215.85 464 6
218.94 189.08 233.20 194.30 229.18 159.59 159.83 160.13 100.32 237.69 549 6
240.01 205.65 253.40 212.74 247.09 171.05 17091 171.66 116.80 261.32 6.44 6
263.72 22450 276.10 233.65 268.10 183.70 183.05 184.35 137.22 28642 7.51 6
289.88 24591 301.11 257.19 292.34 197.69 196.40 198.3¢ 163.00 31250 871 6
318.04 270.09 328.08 283.42 319.68 213.16 211.13 213.78 195.83 338.90 10.04 6
347.53 297.06 356.66 31220 349.72 230.21 227.35 230.76 237.22 364.96 11.51 6
377.59 326.69 386.48 343.21 381.85 248.91 245.18 249.35 287.32 390.12 13.09 6
407.55 358.65 417.30 375.98 41542 269.22 264.63 269.51 343.67 414.08 14.77 6
437.01 392.54 449.11 409.98 449.92 291.05 285.66 291.15 402.02 436.95 16.52 6
465.98 427.95 482.08 44477 485.08 314.18 308.13 314.05 45045 459.34 1831 6
494.84 464.70 516.65 480.14 520.96 338.37 331.87 337.99 516.61 482.35 20.14 6
524.33 502.87 553.40 516.16 557.87 363.38 356.69 362.72 576.30 507.37 22.05 6
555.43 542.78 592.85 553.09 596.21 389.01 382.45 388.06 640.35 535.85 24.07 6
589.08 584.85 635.16 591.30 636.21 415.08 409.02 413.86 707.36 568.92 26.22 6
625.92 629.29 679.90 631.02 677.78 441.40 436.20 439.94 774.28 607.06 2847 6
666.00 675.97 726.06 672.24 720.49 467.74 463.77 466.09 840.77 649.84 30.79 6
753.67 773.91 818.47 758.47 807.56 519.69 519.17 517.89 988.16 743.89 35.71 6
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fr11 b1 b3n damn b1 ben1 brn d811 8911 domn  Dist #
deg deg deg deg deg deg deg deg deg deg rad

3483 37.03 6840 30.67 68.36 42,50 44.42 42.70 -2.73 2436 6.03 10
3744 4293 7647 36.45 78.38 43.43 45.19 43.67 -2.62 25.10 5.84 10
40.38 48.39 8441 4223 8762 4450 46.08 44.78 -242 26.14 5.60 10
43.74 53.34 92.15 47.96 95.82 45.79 47.18 46.08 -2.10 2758 539 10
47.60 57.77 99.64 53.58 102.90 47.34 48.53 47.63 -1.61 2955 5.28 10
5194 61.73 106.81 59.02 108.88 49.21 50.19 49.48 -091 3212 520 6
56.75 65.29 113.62 64.23 113.89 51.43 52.19 51.66 0.05 3537 5.12 6
61.99 68.55 120.00 69.17 118.09 54.03 54.56 54.20 1.31 3934 515 6
67.59 T71.63 125.87 73.82 121.71 57.01 57.35 57.12 2.91 4406 528 6
73.50 T74.69 131.20 78.20 12496 60.39 60.55 60.42 489 4954 551 6
7965 77.87 13595 82.35 128.06 64.16 64.17 64.11 728 55.78 582 6
86.00 81.30 140.11 86.36 131.23 68.31 6823 68.18 10.09 6278 6.21 6
92.53 85.13 143.74 90.33 134.63 T72.84 T2.71 72.64 13.35 7050 6.68 6
99.24 89.46 146.92 9442 138.41 77.74 77.62 77.49 1705 7894 722 6
106.15 94.39 149.82 98.79 142,67 83.00 8293 82.72 2120 88.11 T84 6
113.34 9998 152.68 103.61 14745 8862 88.65 88.34 2581 98.01 8535 6
120.90 106.28 155.79 109.06 15281 94.61 94.76 9434 30.89 108.71 935 6
128.96 113.32 159.51 115.31 158.76 100.96 101.27 100.75 36.48 120.26 10.26 18
137.70 121.14 164.24 122.52 165.36 107.71 108.17 107.58 42.63 132.78 11.32 18
147.33 129.78 170.37 130.83 172.70 114.89 11547 114.85 49.42 146.43 12.57 18
158.12 139.30 178.29 140.39 180.95 122.54 123.22 12262 57.00 161.36 14.07 18
170.36 149.80 188.31 151.34 190.35 130.74 131.45 130.95 65.55 177.79 15.84 18
184.37 16145 200.71 163.83 201.24 139.57 140.23 139.90 75.34 195.90 17.93 18
200.46 17445 215.64 178.08 214.04 149.15 149.65 149.59 86.75 215.85 20.35 18
218.94 189.08 233.20 194.30 229.18 159.59 159.83 160.13 100.32 237.69 23.08 18
240.01 205.65 253.40 212.74 247.09 171.05 170.91 17166 116.80 261.32 26.12 18
263.72 22450 276.10 233.65 268.10 183.70 183.05 184.35 137.22 286.42 29.41 18
289.88 24591 301.11 257.19 29234 197.69 196.40 198.34 163.00 312.50 32.94 18
318.04 270.09 328.08 283.42 319.68 213.16 211.13 213.78 195.83 338.90 36.67 18
347.53 297.06 356.66 312.20 349.72 230.21 227.35 230.76 237.22 364.96 40.48 18
377.59 326.69 386.48 343.21 381.85 248.91 245.18 249.35 287.32 390.12 43.95 18
407.55 358.65 417.30 375.98 415.42 269.22 264.63 269.51 343.67 414.08 46.44 18
437.01 392.54 449.11 409.98 449.92 291.05 285.66 291.15 402.02 436.95 47.91 18
465.98 42795 482.08 444.77 485.08 314.18 308.13 314.05 45945 459.34 49.19 18
494.84 464.70 516.65 480.14 52096 338.37 331.87 337.99 516.61 482.35 51.18 18
524.33 502.87 553.40 516.16 557.87 363.38 356.69 362.72 576.30 507.37 54.17 18
555.43 542.78 592.85 553.09 596.21 389.01 382.45 388.06 640.35 535.85 57.71 18
589.08 584.85 635.16 591.30 636.21 415.08 409.02 413.86 707.36 568.92 60.99 18
625.92 629.29 679.90 631.02 677.78 441.40 436.20 439.94 77428 607.06 63.82 18
666.00 675.97 726.06 672.24 720.49 467.74 463.77 466.09 840.77 649.84 66.66 18
753.67 773.91 81847 758.47 807.56 519.69 519.17 517.80 988.16 7T43.89 73.30 18
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Tables 5.1, 5.2, 5.3 and 5.4 present data for the postfault trajectories for a fault
at bus # 996 and loading Case4 for different fault clearing times, t¢l. Tables 5.1 and
5.3 give only angle components of the trajectory and the boundary, whereas Tables
5.2, and 5.4 correspond to the computation which considers both angle and speed
components of the trajectory and the boundary. In Table 5.1, it is seen that the
faulted trajectory probably crosses manifold 9 (the Euclidean distance is minimum
at 0.09) if only angles are taken into calculation. But, when both the speed and
angle are considered, the minimum Euclidean distance shows that the trajectory
leaves at manifold 6, as seen in Table 5.2. Manifold 6 corresponds to the stable
real eigenvalue. For el = 0.088s, the trajectory leaves or comes close to manifold
6 as shown in Tables 5.3 and 5.4. This shows that stability boundary only in angle
subspace can be different from the stability boundary in the angle and speed space.

Chiang et al [38] also proposed the prediction of the unstable mode of a power
system due to a fault cleared immediately after the critical clearing time using the
unstable manifold of the controlling UEP. The unstable manifold of the controlling
UEP is computed integrating the postfault system. But, the unstable manifold is

computed in this dissertation using the real normal form of the vector fields.

5.3 Summary

This chapter presents a conceptual framework to study machine separation from
the system using the approximate boundary and the postfault system trajectory.
Both the graphical and numerical approaches are discussed. The concept is explained
with examples and is applied to the 11 generator test system. It is observed that the

trajectory leaves at different edges of the boundary depending on the clearing time,
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as depicted in Figure 5.1. If the system trajectory leaves far away from the control-
ling UEP, the ond approximation of the stability boundary may not be sufficient to

implement this scheme to study the mode of system instability, as seen in Figure 5.1.
gu
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6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1 Conclusions

6.1.1 The goal

The goal of this dissertation is to understand and explain better the nonlinear

phenomena of stressed power systems. Specific objectives are:

e To approximate the stability boundary of a SEP of a power system around the

controlling UEP.

To study the shape of the stability boundary and the region of attraction of
the SEP.

To analyze certain attributes of the stability boundary (e.g., curvature, poten-

tial energy etc.).

To study how system trajectory approaches (or behaves near) the boundary.

To study generators’ separation from the system.

6.1.2 The approach

To address the above mentioned problems the following approach is followed:
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o Real normal form formulation is proposed and implemented.

o To study the shape of the boundary under different stress conditions, a general

computer program is developed. The program does the following tasks:

1. Considers classical representation of the machines in a synchronous refer-

h machine taken as reference.

ence frame with the nt
2. Computes the Jacobian and Hessian matrices at the controlling UEP.

3. Performs linear analysis of the system by computing the eigenvalues and

eigenvectors.

4. Does the real Jordan form transformation to linear, and second order
terms.

2nd

5. Applies real order normal form transformation to the Jordan system.

6. Displays the approximate stability boundary for different stress conditions

to arbitrary 2 or 3 dimensional subspaces.
7. Displays how the faulted trajectories approach the boundary.

8. Calculates the norm-2 distance between the postfault SEP and points on

the stable manifolds.

9. Computes the potential energy on the stable manifolds.
o Used a test system under different conditions of system stress.

e Obtained results for certain conditions.

6.1.3 Important findings of this work

The important results obtained are:
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o The relation between the system stress, due to loading at critical generators,

and the boundary of the region of stability has been shown graphically.

e The shape of the region of attraction of postfault SEPs of a power system for
different degrees of stress due to loading at the critical generators has also been

displayed and analyzed.

e It has been found that the change in magnitude of nonlinear coefficients, h2,

with increase in stress due to loading is not uniform in all the directions.

e The behavior of the system trajectory near the UEP and as it leaves the bound-
ary is displayed. It is depicted that when a faulted trajectory leaves the region

of attraction, it follows the unstable manifold of the UEP.

e The real eigenvalue of the system at the controlling UEP decreases with the

increase in system stress.

o The effect of stress on eigenvalues, h2r, I' due to the removal of more lines at
fault clearing is found to have less effect than the stress due to loading at least

for this 11 generator test system.

e It has been shown that the stability region shrinks with stress, and that the
SEP and UEP tend to come close to each other. At higher stress the SEP and

UEP may combine and the SEP disappears.

o Potential energy on the approximate boundary is also computed. It is observed
that except along the directions of the manifolds associated with real eigenval-
ues, the potential energy is almost constant in all directions around the UEP

at lower stress but changes appreciably at higher stress.
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e A conceptual framework for the study of the mode of system separation us-
ing the approximate stability boundary and the postfault system trajectory is

presented.

o It is seen that the stability boundary as seen when projected in the angle
subspace alone can be different from that of the boundary seen in the angle

and speed space.

o It is observed that the postfault system trajectory leaves at different edges of

the boundary depending on the fault clearing time.

6.2 Suggestions for Future Work

The following suggestions are made for further research work:

1. Analytic sensitivity analysis of the shape of the boundary with system stress.

2. The homological operator, La is sparse. For a large system, the sparsity of La

can be used for efficient computation of A2y coefficients.

3. Consideration of 3™ order terms in Taylor’s series and consequently 3™ or-
der normal form transformation can be used to extend the stability boundary

further away from the UEP.

4. For practical application for a larger system, efficient computer coding needs

to be exploited.

5. It has been observed that at increased stress the SEP and the UEP tend to

come close together and possibly coalesce. This phenomenon needs further

investigation.
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APPENDIX A. JACOBIAN AND HESSIAN MATRICES

A.1 Jacobian Matrix

The system is given by the following equations:

bin = wijp for i=1ln-—1
Win = E (Pmi - E; Giz') - (Pmn - EnGnn)
1 n—1
~3f | EiEnYincos (6in— 8in) + 3 E;E;Y;jcos (& — 6 — 0;5)
2 j=li#i
-1
1 -
+'M—n- Z EjEann CcOos (6jn+0jn) — cwin i=1,...,n—1 (A.l)
J

The above 2(n — 1) equations can be written as vectors:

§ =

&

w = f@)-cw (A.2)

&~

where § and w are (n — 1) vectors of the relative angles é;,, and relative speeds w;,,.

The Jacobian matrix of the above system has the following form:

(=]

I
Jd —cl

where 0 and I are the (n — 1) x (n — 1) zero and unity matrices respectively and



0
d= 3—é_f_(é) (A.3)

The diagonal elements of J are:

n—1

1 . .
iy = A A;psin(é;, — 0,,) + . Z 'Aij sin(é;, — 6jn - 02']-)
: j=1,j#
1 .
_M_nAin sin(&;, + i) (A.4)
and the off-diagonal elements are:
1 . 1 . .
Jij = _EAij sin(6;, — 5jn - 02']') - M—nAjn sm(5jn + 0]71) (A.5)

4

where, Az'j = Ez'EjY;'j.
A.2 Hessian Matrices

The Hessian matrices of f;(§) is denoted by H i, and is defined as

. 2 ¢,
H = [—a&] j=1,.n—-1, k=1,.n—1 Vi (A.6)
3(5jn35k.n
32f'(§) 1 n—1
——6622 = i A;pcos(; — 0;) + . Z 'Aij cos(8;,, — 6jn - eij)
in ¢ J=1,j#1
1
'"M_Az'n cos(b;, +6;,) i=1,.,n—1 (A7)
n
For:#k
Pfi8) _ 1

m = —mAikws(‘sin —8pn—0;1) i=1,.,n—1 (A.8)
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Forz#k

2£;(8) _ Ak Ap ,
66]2m = Jéi cos(b;y, — Oy, — 051) — M: cos(bpp +0py) i =1,.,n =1 (A9)

Andfori#j, j#k, k#1

321;(8)
=0 A.10
aéjn‘skn ( )



APPENDIX B. DATA FOR 11 GENERATOR TEST SYSTEM

B.1 Dynamic Data for 11 Generator Test System

The inertia constants, H and direct axis transient reactance on 100 MVA base of the

11 generator test system are given in Table B.1. M and H are related as, M = %71,{7

Table B.1: H and z g

Bus #  H(sec) z g
54  241.000 0.00393
458 74.400 0.01280
733 73.850 0.01220
784  28.140 0.06233
968 73.850 0.01220
975  57.520 0.04803
991 115.040 0.02402
1001 105.792 0.01797
2001 109.960 0.00848
2018  207.230 0.00451
2192 9344.170 0.00010

B.2 Load Flow Data for 11 Generator Test System

Tables B.2 and B.3 provide bus and branch data for 11 generator test system.
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Table B.2: 11 generator bus data

Serial Bus Vol Mag Vol Angle  Pippq  Qioad  Fgen  Qgen

# # p.u. Deg MW MVAR MW MVAR
1 3 1.0740 19.06 -4.85 -90.83 0.00 0.00
2 5 1.0829 19.50  250.39  480.10 0.00 0.00
3 T 1.0929 19.52  228.02 77.17 0.00 0.00
4 8 1.0693 21.76 6.35 221.21 0.00 0.00
5 24 1.0826 12.97  341.12  244.28 0.00 0.00
6 30 - 1.1331 10.69 432.69 111.05 0.00 0.00
T 33 1.1384 15.38 497.84  -88.98 0.00 0.00
8 37 1.1505 20.99 235.69 -12.89 0.00 0.00
9 39 1.1520 23.01 43.70 -6.79 0.00 0.00

10 40 1.1519 22.99 43.80 -6.88 0.00 0.00

11 43 1.1330 22.56 45.88 3.64 0.00 0.00

12 44 1.1344 22.42 45.87 3.64 0.00 0.00

13 47 1.1231 24.01 945.23 -374.91 0.00 0.00

14 48 1.1391 31.59 71.72  186.88 0.00 0.00

15 54 1.0909 30.20 4114.20 1365.20 6357.47 1814.30

16 80 1.0532 17.66  920.78  -75.58 0.00 0.00

17 140 1.1491 21.19 18.08 10.25 0.00 0.00

18 141 1.1491 21.19 17.98 10.22 0.00 0.00

19 142 1.1469 22.08 19.72 13.77 0.00 0.00

20 143 1.1469 22.08 19.70 13.80 3.00 0.00

21 144 1.1478 23.19 40.54 30.29 0.00 0.00

22 145 1.1639 31.60 30.77 -3.79 0.00 0.00

23 146 1.1639 31.60 30.86 -3.81 0.00 0.00

24 148 1.1456 20.17 17.18 9.37 0.00 0.00

25 149 1.1456 720.17 17.18 9.37 0.00 0.00
26 150 1.1461 719.51  233.50 31.41 0.00 0.00
27T 226 1.1813 37.34 0.00 0.00 0.00 0.00
28 288 1.1733 34.15 52.18 -3.29 0.00 0.00
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Table B.2 (Continued)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
33
54
55

297
458
617
618
644
733
784
963
967
968
975
977
989
991
992
993
994
996
1000
1001
1060
1106
2001
2018
2192
2317
2325

1.1183
1.0667
1.1606
1.1608
1.0749
1.0000
1.0000
1.0521
1.0766
1.0000
1.0000
1.1841
1.0987
1.0000
1.1813
1.0495
1.0495
1.0536
1.0989
1.0000
1.1785
0.9883
0.9664
1.0895
1.0340
1.0600
1.0695

16.37
24.63
30.75
30.78
13.73
39.04
15.64
19.58
32.18
37.42
37.98
36.21
40.34
40.90
36.88
19.45
19.45
18.80
40.47
44.47
37.16
14.27

4.23
26.35
14.05
-3.54

9.38

2049.10
644.56
38.70
38.66
115.54
31.64
887.73
0.00
-8.41
31.64
28.00
22.10
0.00
57.00
0.00
193.17
190.93
-7.12
0.00
360.00
2.73
184.83
2632.00
4244.60
235100.00
8783.70
471.40

-667.91
285.91
2.76
2.74
-537.09
20.00
926.25
0.00
-156.82
20.00
29.00
-7.04
0.00
59.G0
0.00
378.30
374.18
-107.08
0.00
360.00
2.12
199.34
498.53
805.48
62413.00
-817.70
-151.14

0.00
1669.37
0.00
0.00
0.00
1999.20
500.00
0.00
0.00
1999.20
100.00
0.00
0.00
200.00
0.00
0.00
0.00
0.00
0.00
1300.00
0.00
0.00
2827.60
5329.50
241884.73
0.00
0.00

0.00
106.74
0.00
0.00
0.00
161.66
329.43
0.00
0.00
673.16
21.77
0.00
0.00
123.41
0.00
0.00
0.00
0.00
0.00
459.43
0.00
0.00
141.27
1777.66
63475.55
0.00
0.00
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Table B.3: 11 generator line data

From Bus To Bus R, p.u X,p.u. B, p.u Off-nominal tap
3 5 0.003520 0.036720 3.45154 0.0000
3 5 0.003390 0.036690 3.45813 0.0000
3 150  0.000300 0.018200 0.00000 0.9259
3 150 0.000300 0.020300 0.00000 0.9259
3 996 0.000960 0.009080 0.85556 0.0000
3 996 0.000960 0.009080 0.85556 0.0000
5 7 0.002280 6.027560 2.62024 0.0000
5 458 0.000640 0.034460 0.00000 1.0000
7 8 0.001730 0.020750 1.96472 0.0000
7 458 0.041050 0.393870 0.00000 1.0000
8 458 0.001280 0.026470 0.00000 1.0000
24 30 0.003380 0.029770 0.00000 0.0000
24 33 -0.052620 1.383430 0.00000 0.0000
24 33 0.012920 0.112030 0.18075 0.0000
24 33 0.012920 0.112050 0.18073 0.0000
24 33 0.005740 0.060520 0.00000 0.0000
24 644 0.000100 0.005460 0.00000 1.0000
30 33 0.016010 0.099370 0.15627 0.0000
30 33 0.016040 0.099390 0.15623 0.0000
30 644 -0.001620 0.077330 0.00000 1.0000
33 37 0.008120 0.078180 0.13190 0.0000
33 37 0.008120 0.078180 0.13190 0.0000
33 47 0.010010 0.098760 0.15844 0.0000
33 47 0.003290 0.046510 0.00000 0.0000
33 644 0.028260 0.461480 0.00000 1.0000
37 39 0.005010 0.034670 0.05207 0.0000
37 40 0.005010 0.034660 0.05207 0.0000
37 43 0.002400 0.031800 0.05672 0.0000
37 44 0.002400 0.031800 0.05671 0.0000
37 140  0.001410 0.008720 0.01366 0.0000
37 141 0.001410 0.008720 0.01366 0.0000
39 40 0.030620 0.809460 0.00000 0.0000
39 40 -0.035640 0.543650 0.00000 0.0000
39 617 0.014490 0.113180 0.00000 0.0000
39 618 0.000240 0.870170 0.00000 0.0000
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Table B.3 (Continued)

40
40
43
43
44
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
48
48
48
48
967
967
54
34
54
54
54

54

617
618
44
47
47
48
48
48
48
48
54
80
297
458
644
784
784
784
993
994
1106
2018
2317
733
733
733
733
48
48
80
297
458
644
784
784
784
993

0.000240
0.015110
-0.023140
0.001800
0.001800
0.003500
0.003500
0.002700
0.003520
0.003520
0.001540
0.021770
0.004330
0.032940
-0.168360
0.157880
0.059910
0.109310
0.000580
0.000560
0.157990
-0.017990
-1.056490
0.000600
0.000600
0.000600
0.000600
0.000300
0.000300
-0.000780
0.005750
0.005910
-0.014740
0.002430
-0.002370
0.001210
-0.025040

0.870170
0.115070
0.377740
0.020100
0.024000
0.044490
0.044490
0.031800
0.044730
0.044730
0.023400
0.479680
0.039990
0.771160
2.246910
1.518370
0.936860
1.701790
0.078940
0.079840
1.520600
0.445020
4.386920
0.025700
0.026500
0.026500
0.026500
0.018100
0.016300
0.076070
0.157510
0.739670
0.096690
0.812190
0.751970
0.447110
0.528020

0.00000
0.00000
0.00000
0.03459
0.04222
0.07339
0.07339
0.11433
0.07386
0.07386
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.1435
1.1435
1.1435
1.1435
0.9167
0.9167
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000




Table B.3 (Continued)
54 994 -0.025450 0.534040 0.00000 1.0000
54 1106 -0.002430 0.753070 0.00000 1.0000
54 2001 -0.096710 0.419510 0.00000 1.0000
54 2018 -0.002990 0.025740 0.00000 1.0000
54 2192 -0.188400 0.877980 0.00000 1.0000
54 2317 -0.115110 0.331850 0.00000 1.0000
80 297 -0.000800 0.040080 0.00000 1.0000
80 458 -0.031240 0.478100 0.00000 1.0000
80 784 -0.004440 0.106330 0.00000 1.0000
80 784 -0.004600 0.094580 0.00000 1.0000
80 784 -0.002460 0.058540 0.00000 1.0000
80 993 -0.031210 0.659410 0.00000 1.0000
80 994 -0.031730 0.666930 0.00000 1.0000
80 996 0.000530 0.005840 0.60400 0.0000
80 996 0.000530 0.005840 0.60400 0.0000
80 1106 -0.004610 0.094720 0.00000 1.0000
80 2018 -0.056810 0.548510 0.00000 1.0000
140 141 -0.062300 0.927530 0.00000 0.0000
140 142 0.004780 0.029280 0.04586 0.0000
141 143 0.004780 0.029280 0.04586 0.0000
142 143 -0.005500 0.383150 0.00000 0.0000
142 144 0.004670 0.028850 (.04519 0.0000
143 144 0.004670 0.028850 0.04519 0.0000
144 145 0.008950 0.077910 0.12311 0.0000
144 146 0.008950 0.077910 0.12311 0.0000
144 148 0.007590 0.048320 0.07128 0.0000
144 149 0.007590 0.048320 0.07128 0.0000
145 146 -0.005010 0.208210 0.00000 0.0000
145 226 0.005640 0.050370 0.07944 0.0000
145 288 0.085750 0.568540 0.00000 0.0000
146 226 0.005640 0.050370 0.07944 0.0000
146 288 0.085500 0.567040 0.00000 0.0000
148 149 -0.002830 0.382420 0.00000 0.0000
148 150 0.001880 0.011980 0.01769 0.0000
149 150 0.001880 0.011980 0.01769 0.0000
150 288 0.066340 0.555860 0.00000 0.0000
150 297 0.028270 0.247970 0.00000

0.0000
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Table B.3 (Continued)
150 458 0.014190 0.155890 0.00000 1.0000
226 288 0.009950 0.063350 0.11046 0.0000
226 617 0.007650 0.071990 0.10050 0.0000
226 618 0.007650 0.072000 0.10050 0.0000
226 975 0.000240 0.015630 0.00000 1.1801
226 977 0.009950 0.070690 0.11169 0.0000
989 226 0.000300 0.017900 0.00000 0.9259
989 226 0.000300 0.017900 0.00000 0.9259
989 226 0.000300 0.017900 0.00000 0.9259
226 992 0.000200 0.021800 0.00000 0.0000
226 992 0.000200 0.022000 0.00000 0.0000
226 992 0.000180 0.022150 0.00000 0.0000
226 1060 0.000000 0.158000 0.00000 0.0000
288 977 -0.005660 0.325930 0.00000 0.0000
297 458 -0.000120 0.050630 0.00000 1.0000
297 784 0.004860 0.127190 0.00000 1.0000
297 784 -0.000120 0.078270 0.00000 1.0000
297 784 -0.000180 0.142180 0.00000 1.0000
297 993 0.000830 0.055210 0.00000 1.0000
297 994 0.000820 0.055840 0.00000 1.0000
996 297 0.000300 0.019200 0.00000 ©.9167
996 297 0.000300 0.018800 0.00000 0.9167
996 297 0.000300 0.019200 0.00000 0.9167
297 1106 0.004860 0.127370 0.00000 1.0000
297 2018 -0.266020 2.781220 0.00000 1.0000
458 784 -0.026010 1.432810 0.00000 1.0000
458 784 -0.072710 2.173670 0.00000 1.0000
458 784 -0.014540 0.788760 0.00000 1.0000
458 993 -0.053110 1.057950 0.00000 1.0000
458 994 -0.053970 1.070020 0.00000 1.0000
458 1106 -0.072990 2.176840 0.00000 1.0000
617 618 -0.034810 0.934120 0.00000 0.0000
617 618 0.012240 0.597670 0.00000 0.0000
644 2001 -0.414030 1.712200 0.00000 1.0000
644 2018 -0.050240 0.272610 0.00000 1.0000
644 2192 -0.000560 0.005790 0.00000 1.0000
644 2317 -0.057280 0.242950 0.00000 1.0000
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Table B.3 (Continued)
784 993  0.022650 2.095820 0.00000 1.0000
784 993 -0.037310 1.288360 0.00000 1.0000
993 784 -0.067110 2.340360 0.00000 1.0000
784 994 0.022410 2.119770 0.00000 1.0000
784 994 -0.038040 1.303070 0.00000 1.0000
994 784 -0.068440 2.367080 0.00000 1.0000
784 1106 0.000790 0.178760 0.00000 0.0000
784 1106 -0.079710 0.777450 0.00000 1.0000
784 1106 -0.144390 1.412310 0.00000 1.0000
963 967 0.001290 0.013850 1.46527 0.0000
963 993 0.000160 0.001680 0.17525 0.0000
963 994 0.000160 0.001680 0.17529 0.0000
963 996 0.000190 0.002030 0.87993 0.0000
963 996 0.000190 0.002030 0.87993 0.0000
967 968 0.000100 0.018100 0.00000 1.1053
967 968 0.000100 0.018100 0.00000 1.1053
967 968 0.000100 0.018100 0.00000 1.1053
967 968 0.000100 0.018100 0.00000 1.1053
989 991 0.000240 0.013740 0.00000 1.1037
989 991 0.000240 0.013680 0.00000 1.1037
989 992 -0.008600 0.165790 0.00000 0.9259
989 992 -0.008700 0.167400 0.00000 0.9259
989 992 -0.008990 0.171790 0.00000 0.9259
989 1000 0.000030 0.000580 0.06315 0.0000
989 1000 0.000030 0.000580 0.06315 0.0000
993 994 -0.009390 0.109190 0.00000 0.0000
993 1106 0.022530 2.098890 0.00000 1.0000
994 1106 0.022280 2.122870 0.00000 1.0000
1000 1001 0.000180 0.014770 0.00000 1.1053
1000 1001 0.000180 0.014770 0.00000 1.1053
2001 2018 -0.014240 0.070820 0.00000 1.0000
2001 2192 -0.160380 0.650650 0.00000 1.0000
2001 2317 -0.005240 0.021160 0.00000 1.0000
2018 2192 -0.654290 2.050080 0.00000 1.0000
2018 2317 -0.020600 0.064670 0.00000 1.0000
2192 2317 -0.001120 0.005620 0.00000 1.0000
2192 2325 -0.002450 0.019870 0.00000 1.0000
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