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NOMENCLATURE 

6^ rotor angle of i— machine 

fh • • f h '  rotor angle of i— machine with respect to n— machine 

LCj rotor speed of i— machine 

• f h  •  •  f h  rotor speed of i— machine with respect to n— machine 

Mj inertia constant of i— machine 

Di damping constant of i— machine 

mechanical power input to i— machine 

Ej constant voltage behind the direct-axis transient reactance of i— machine 

Gil driving point conductance 

y'lj modulus of ij— element of the reduced system admittance matrix 

6jj argument of ij— element of the reduced system admittance matrix 

^  = : ! •  «  

A i j  = E ^ E j ^ i j  

n number of generator 

N  dimension of the system 

stable manifold of the equilibrium point x 

W^{x) u n s t a b l e  m a n i f o l d  o f  t h e  e q u i l i b r i u m  p o i n t  x  
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X 

A { x s )  region of attraction of stable equilibrium point X s  

d A { x s )  stability boundary of stable equilibrium point x s  

U  matrix of right eigenvector 

U r  matrix of right real eigenvector 

Vf Ur-'^ 

h'2r real second order normal form coefficient 

T^j curvature coefficient 

A eigenvalue 

A'2(a:), H 2^^ order terms of the Taylor series (Hessian) 

Dh2r{ y )  partial derivative of h2r( y )  w. r. t. vector y 

VpE potential energy 

machine angle of i —  machine in center of inertia (COI) reference 

C i j  = E ^ E j B ^ j  

D i j  = E j E j G j j  

A  Jacobian matrix of the swing system 
jL JL 

p^j participation factor of i —  state in the j —  mode 
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1. INTRODUCTION 

1.1 Need for Analysis of Stressed Power Systems 

Present interconnected power systems are much more stressed than ever due to 

lack of new trcinsmission facility as well as heavier loading of the transmission net­

work. This stress in a network exhibits several interesting but yet to understand 

nonlineair phenomena. This nonlinear complex behavior is not adequately analyzed 

with existing tools, and has generated considerable interest among researchers. Sev­

eral nonlinear mathematical tools are being exploited with the existing procedures to 

investigate the nonlinear phenomenon in stressed power systems. This dissertation 

proposes the use of normal form of vector fields [1, 2], a comparatively new tool in 

the domciin of power system analysis [3], to study the stability boundary of a stressed 

power system. 

Earlier, several attempts were made by researchers to approximate the stability 

boundary of a power system. In a broad sense these approaches are of two categories: 

the first is Lyapunov/energy based, and the second is non Lyapunov type. A rigorous 

treatment of Lyapunov type methods is outside the scope of this dissertation and is 

available in the literature; see for example [4, 5]. We will only mention the sedient 

features of some interesting works done in the area of characterization of stability 

boundary of a power system. Chiang et al [6] and Zaborzsky et al [7] independently 
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characterize the stability boundary of a power system. In these works the authors 

prove that under certain conditions the stability boundary of a power system is made 

of the union of stable manifold of the unstable equilibrium points (UEP) which lie 

on the boundary [8]. In other words, the boundary is known if the stable manifold 

of the UEP is known. It is extremely difficult, however, to numerically compute 

the stable manifold of an UEP for a practical size power network. To overcome 

this numerical computation problem, a constant energy surface through the UEP of 

interest is considered a good approximation of the stability boundary near that UEP. 

In addition to the Lyapunov type method, a few other methods were tried to 

approximate the stability boundary of a power system. These methods were suggested 

nearly a decade ago; but none has been successfully applied to any practical size power 

system. The stability boundary has been approximated by a power series and the 

coefficients are calculated by considering the properties of the stability boundary at 

a "type-1" UEP [9]. Type-1 UEP is defined in chapter 2. The stability boundary of a 

SEP is assumed to be made of a number of disjoint (2n—3) surfaces in a (2ra—2) space 

[10], n being number of generators. (2n — 3) planes, tangent to the stability boundary 

at the type-1 UEP, are constructed to approximate the stability boundary. In other 

words, the union of eigenvectors at the type-1 UEP is taken as the approximate 

stability boundary. This approximation is, however, a first order approximation. A 

power series expansion of the stable manifold of a "hyperbolic" equilibrium point is 

derived in [11], which wcis inspired by Ushiki's work [12]. Ushiki introduced explicit 

globally analytic expressions of unstable manifolds for strictly hyperbolic equilibrium 

points. The idea of the hyperplane has been extended to find the second order 

approximation to the stability boundary [13]. Recently, artificial neural network 
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based tangent hypersurfaces have been proposed in [14] to approximate the stabihty 

boundary. 

In this dissertation, we suggest a methodology to approximate the stable man­

ifold of cin UEP using the normal form theory. The key idea of this method is that 

for a linear system the stable manifold is equivalent to the stable eigenspace. The 

nonlinear system is trajisformed to a linear system by a nonlinear coordinate trans­

formation. The stable eigenspace of the transformed linear system is transformed 

back to the original coordinates using the nonlinear transformation resulting in an 

approximated stable manifold. The objective of this research is to develop new meth­

ods or combinations of methods to ajialyze, and explain the nonlinear phenomena in 

stressed power systems. 

1.2 Method of Normal Forms 

Normal form theory gives a tool for simplifying the forms of equations to the 

simplest possible higher-order terms near their equilibria [1, 2, 15, 16, 17]. The key 

idea underlying the normal form method is the use of local coordinate transforma­

tions to simplify the equations describing the system dynamics under considerations. 

In other words, with the normal form method a dynamical system is transformed 

to the simplest form or so-called normal form system using nonlinear coordinate 

transformation. The next chapter describes the normal form method in detail. 

The key idea of this dissertation is to approximate the stable manifold of an 

unstable equilibrium point using the normal form method. The original nonlinear 

system is transformed to a linear system using the nonlinecir coordinate transform 

around an equilibrium point. Then the stable eigenspace of the transformed linear 
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system is transformed back to the original system to approximate the stable man­

ifold of the original nonlinear system up to some degree. This approximate stable 

manifold is used to find the stability boundary of a stable equilibrium point around 

the unstable equilibrium point of interest. Thus, the normal form method enables 

us to approximate the stable manifold of this unstable equilibrium point which is 

otherwise very difficult to compute numerically for a practical size power system. 

This method involves two steps: 1) first to select an unstable equilibrium point 

(UEP) which lies on the stability boundary, cind 2) the second step is to approximate 

the boundary by the second order approximated manifolds. Direct stability analysis 

involves calculation of a value of critical potential energy against which transient 

stability cissessment is made. There are several UEPs on the stability boundary. The 

UEP of interest is called the controlling UEP and its computation is one of the key 

steps in power system transient stability assessment by the transient energy function 

(TEE) method [5]. Thus, we can cissume that computation of (at least some of) the 

UEPs on the stability boundary is feasible. 

The method of normal forms of vector fields is being used to characterize the 

dynaimic behavior of stressed power systems at Iowa State University [18]. In [19], 

this method is applied to characterize the mode-state participation and understand 

the relationship between system stressed condition and nonlinearity. The nonlinear 

modal interaction and the effect of the interaction on the stressed power system dy­

namic behavior including excitation control performance are discussed in [20]. The 

normal form method is also applied to the analysis of the ac/dc power system dynam­

ics [21]. Additional work, using normal forms method, to predict the inter-area type 

system separation in a large power system is also undertaken. In all of this work, the 
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analysis is done around the stable equilibrium point. However, eis mentioned above, 

this dissertation also contains analysis of a stressed power system around the relevant 

unstable equilibrium point. 

1.3 Problem Statement 

The objective of the present work is to understand "better" the nonlinecir phe­

nomenon of stressed power systems. The prediction of the location of boundaries 

between groups of machines, during system sepciration following a large disturbance 

is of great interest. A novel method of approximation of the stability boundary of a 

stable equilibrium point around an unstable equilibrium point will be presented. The 

emphasis is to study the effect of system stress on the stability boundary of a power 

system. Analysis of how the shape of the boundary is affected by stress is of interest. 

The stability boundary will be approximated using the normal form of vector fields. 

The approximated boundary will then be examined to see whether it gives a proper 

estimation of critical energj*. The behavior of the system trajectory near the UEP 

will be investigated to find how the unstable trajectory leaves the boundary. 

1.4 Organization of the Dissertation 

The organization of this dissertation is as follows; the introduction presents a 

motivation, and general overview of the proposed method. Chapter 2, which provides 

a review of the related dynamical system, presents the formulation of the problem 

including the modeling of the system and also contains the motivation for real normal 

form of vector fields. In chapter 3, the general method of approximation of the sta­

bility boundary is presented. First, linear analysis around the unstable equilibrium 
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point is provided, then it is followed by the method of approximation of the stable 

manifold by the real normal form of vector fields. Display of the boundary, compu­

tation of potential energy, and solution steps are given at the end of the chapter 3. 

The numerical examples of the proposed method on an 11 generator test system, as 

well as the effect of stress on the shape, size of the region of attraction and stability 

boundary, and movement of the equilibrium points are described in chapter 4. Chap­

ter 5 describes a conceptual framework to study the mode of system instability as 

an application of the approximate boundary. Conclusions aad suggestions for future 

work are presented in chapter 6. Finally the Acknowledgments, Bibliography are 

followed by the appendices described in the following paragraph. 

The derivation of Jacobian and Hessian matrices are given in Appendix A. Ap­

pendix B contains the machine data and load flow data for the 11 generator test 

system. 
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2. MATHEMATICAL FORMULATION 

Before presenting the proposed methodology, we will briefly review a few termi­

nology commonly used in characterization of stability boundary of the power systems 

[22, 23]. 

2.1 Review of Related Dynamic Systems 

A power system cein be described as a nonlinear autonomous system and is 

denoted as 

X  =  f i x )  (2.1) 

where the vector field / maps into and is continuously diiferentiable. A 

point, X is called as em equilibrium •point (EP) or a fixed point of equation (2.1) if 

f{x) = 0. The derivative of the function / at x is known as the Jacobian matrix. 

When the Jacobian matrix at an equilibrium point has no eigenvalues with a zero 

real part, the equilibrium point is called hyperbolic. If the Jacobian of the equilibrium 

point, X has m eigenvalues with positive real part, it is called a type-m UEP. The 

solution curve of equation (2.1) starting initial state x at f = 0 is called a trajectory, 

and denoted by <i>{x,.). The stable and unstable manifold, W'®(x) and W^[x) of the 

hyperbolic equilibrium point, x are defined as 
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Vr'®(x) = {x : <j>{x, t) X as t —* CXD} (2.2) 

W ^ { x )  =  { x  :  ( f > { x , t )  X a s  t  — * •  —00} (2.3) 

The physical meciiiing of the stable manifold of an equilibrium point is that if 

a trajectory touches a stable manifold, the trajectory converges to the equilibrium 

point, whenever the trajectory hits the unstable manifold it goes away from the 

equilibrium point when time increcises. 

For a stable equilibrium point (SEP), there is a region in the state space from 

which all trajectories converge to 15 as f -+ 00 and this region is known eis region of 

stability of xs and is denoted by ^(xs). The stability boundary is the boundary of 

the region of stability, is denoted by 5A(x5). 

For a linear system, stable eigenspace is equivalent to stable manifold. But for a 

nonlineeir system stable eigenspace is a linear approximation to stable manifold and 

the former is tajigent to the latter at the equilibrium point. This can be explained 

with Figure 2.1. With this introduction, we now formulate the problem to be studied 

in this work. 

2.2 Machine and Load Model 

We consider the classical model of multimachine system. Loads are treated as 

constant impedances and the system is reduced to the interned machine buses. The 

equation of motion can be written as the state-space equations [24]. 

Si = ui for i=l,...,n 
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Figure 2.1: Eigenspace and local invariant mamifold of a non­
l inea r  sys t em a t  an  equ i l ib r ium po in t ,  x  
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n 

^mi ~ ̂ i'^i ^i^ii X! ^i^j^ij ^ij) 
j=U¥'j 

(2. ) 

As the synchronism depends on the rotor-angle differences ajad not on their mag­

nitude, relative angles, ajid speeds are used as system state variables. Accordingly, 

the n— machine is taken as reference. Now defining, 

Sin — h ~ '^in — ~ equation (2.4) can be rewritten as 

^in 

^in 

— ^in for i = 1,..,n — 1 

= {^mi - {Pmn - EIGuti) 

Mi 

n—1 
^ i n } { _ ^ i n  ̂ j n  

M n 

n—1 
^ cos ( S j n  + ̂ jn) 

. j 
^ ^in i = l,...,n-l (2.5) 

where, 6^ is the rotor euigle of i— machine 

6:- is the rotor angle of i— machine with respect to n— machine 

aj£ is the rotor speed of i— machine 

is the rotor speed of i— machine with respect to n— machine 

Mj is the inertia constant of i— machine 

is the damping constant of i— machine 

Pjyil is the mechanical power input to i— machine 

is the constant voltage behind the direct-axis transient reactance of i— machine 

is the driving point conductance 

Y^j is the modulus of ij— element of the reduced system admittance matrix 
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6ij is the argument of i j —  element of the reduced system admittance matrix 

c = is constant for uniform damping. The value of c is taken as 0.1 in this work. 

Equation (2.5) represents the swing system. For n generator system, the number of 

state variables are 2(n — 1). In general, equation (2.5) can be represented by equation 

(2.1). 

Now we present the formulation for the real normal form transformation [25]. 

2.3 Real Normal Form of Vector Fields 

Expanding equation (2.1) around an equilibrium point we get, 

x  =  A x  +  X 2 { x )  +  H . O . T  x e R ^  (2.6) 

and for the i— variable, Xj 

xj = A^x + ̂ x'^H^x + H.O.T (2.7) 

where, 

, xo is cin equilibrium A^ = i— row of Jacobian matrix A which is given by d f ]  
dx 

d x j d x j  

Xo 

= Hessian matrix. The detail for the derivation of the point, and = 
Xo 

Jacobian matrix A and the Hessian matrices of the system is given in Appendix 

A. 

In this formulation, terms higher than second order in equation (2.6) are ne­

glected. We do the similarity transformation using equation (2.8) 

x  =  U r y  y e R ^  (2.8) 

Ur is formed from complex right eigenvectors of A, U. From a complex conjugate 

pair of eigenvectors corresponding to a complex conjugate pair of eigenvalues of A, 
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the real and imaginary components are taken separately to form two columns of Ur 

matrix. Equation (2.6), after similarity transformation becomes 

y  =  J r y  +  Y 2 i y )  y  e  (2.9) 

and for the j~ mode, assuming it to be a real mode 

y ' j  =  ^ j y j - ^ y ^ C ^ y  (2.10) 

N N . 

=  ^ j v j  + L E ̂ iiykvi 
k=l l=k 

where ^ ^ E^i ̂ rJpiU^HPUr] = and = Ur''^ 

We now introduce nonlinear coordinate transformation 

y  =  z  +  h 2 r { z )  z  e  (2.11) 

If "resonance" conditions are satisfied (see discussion of equation (2.15) below), we 

get the transformed linear system as 

i = Jrz (2.12) 

The h2rs are obtained solving the following homological equation, 

La h2r = V2 (2.13) 

La is known as Lie (or Poisson) bracket [1] of vector fields J r y  and h 2 r { y ) ,  and is 

given by 

Lah2r{ y )  =  { D h 2 r{ y ) J r y  —  J r h 2 r{ y ) }  (2-14) 
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where D h 2 r { y )  is the Jacobiein matrix of the vector h 2 r { y ) -

If we do complex normal form trcinsformation, we can simplify the computation 

of h2 coefficients [1] as follows: 

In the complex normal form approach, a set of N-dimensional system modes 

is diagonal. In other words, under resonant condition the linear operator La is not 

invertible. It is characterized by Xj + = Xj for second-order resonance condition. 

In the real normal form transformation, the notion of resoneince is the same as far as 

the invertibility of the linear operator La of equation (2.14) is concerned. But the 

only difference is in the derivation of the condition of resonance as La is not diagonal 

(see Section 2.5). 

The resonant nonlinear terms of a normal form are those ones that cannot be 

eliminated by a nonlinear polynomial change of variable [26]. Technically they are in 

the kernel of the adjoint of the homologicaJ operator. La. 

Linear stable eigenspaces of the "transfomed linear system" of the ^ system given 

by the equation (2.12), axe transformed back to x system to approximate the stable 

manifolds. 

(2.15) 

is said to be resonant of order r (where r is an integer), if A^- = m j X j  and 

r = for i = 1, ..,iV; A being a vector of eigenvalues. The linear operator La 

2.4 Motivation of Real Normal Forms 

In our work we transform the state variables back and forth from x to z space via 

y space. Figure 2.2 corresponds to the case when the conventional complex similarity 
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• 

X = Ax + X2 X £ R 
1 I 

-1 U U 

( 

y  =  J y  + Y 2  y e 

-1 
h2 h2 

1 
• 

z = Jz z £ C 

Figure 2.2: Complex normal form transformation 
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and normal form transformation are performed. We get a point in complex space 

when any point in the z space is transformed back to the x space. The problem arises, 

when we attempt to connect all the points in x space to approximate the manifold, 

and hence the boundary. We alleviate this problem using real form transformation. 

Figure 2.3 shows the case for all real transformations. 

Let us assume that we approximate the stability boundary around a type-1 DEP. 

This UEP has A'—1 dimensional stable manifold and 1 dimensional unstable manifold. 

The stability boundary around this UEP is made of this N — 1 dimensional stable 

manifold. This N — 1 stable manifold will be approximated by using corresponding 

stable eigenspace, and normal form transformation. 

In this dissertation the region of the stability is approximated by the real normal 

form method near the so-called controlling UEP. This is the UEP. the potential 

energy of which represents the critical energy for the particular disturbance under 

investigation (see chapter o of [5]). 

2.5 An Example of La for 2 Dimensional System 

Let us assume for a two dimensional system we have the Jordan system as given 

bv 

Jr = 
H V 

-V N 

(2.16) 

rp 

Let y = [j/]^,j/2] • Eigenvalues of Jr are (p ± jV). Let us use second order terms as 

Ho = span 
/ 9 \ / 

y\ 

LV 0 / 

VIVO 

0 

( 9 \ 
^2 

0 / 

0 ^ 

\ y \ }  

0 

V y\y-i / 

Now we compute La{.) using the equation (2.14) as follows [17]. 

/ \ 
0 

Ad 
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• 

X = Ax + X2 X 8 R 
1 k 

-1 
Ur Ur 

1 

y = Jry +Y2 y e 
1 

-1 
hlj. hV 

1 
• 

Z=Jj.Z z £ R 

Figure 2.3: Real normal form transformation 
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-vyiy2 

y-yiy2 - ̂ y\ + 

La 

/ \ / \ ( \ ( \ ( \ 
0 0 0 y.yi + vy2 fi V 0 

^ 0 2y2 J ^ -i^y\ + liyo J f  J 
9 

\ y 2 )  

9 \ 

-2uyiy2 + fiy^ 

Now we represent a matrix representation of the linear operator La{.) with the 

above expressions 

I \  
H —1/ 0 —u 0 0 

2u fj. —2v 0 —V 0 

0 1/ /i 0 0 —V 

1/ 0 0 /li —V 0 

0 1/ 0 2i/ —2v 

^ 0 0  V O f  / X  

An example of normal form based computation of unstable manifold of an equilibrium 

point is discussed below. 

La{.) = (2.17) 

/ 

2.6 Unstable Manifold by Normal Form Method - An Example 

Let us consider the following vector field (page 23 [17]). 

^1 ~ ^1 
ey 

(2.18) 
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The lineax part of (2.18) is given as 

A = 
1 0 

0  - 1  

which has a hyperbolic equilibrium point at (i2,X2) = (OiO)- The unstable manifold 

of the equilibrium point, (0,0) is given in [17] as 

(2.19) iy"(0,0) = {(xi,x2)6i?2 |x2 = jxf}.  

Equation (2.19) is graphically shown in Figure 2.4. 

Next the unstable manifold of the EP is computed using the normal form method. 

Eigenvalues of (2.18) are 1,-1. The matrix of right eigenvectors, U is given eis 

1 0 
U = 

0 1 

Since the system is already in Jordan form {here, J = A), following the notation 

used in section 2.3, the system can be written as 

y\ = y\ 

2/2 = ~f2 + y\ 

Nonlinear coefficients axe computed as: 

^2^2 = ^^12 ~ = ft2j2 — ^^22 ~ ® 

h-y^ = ^11 = 1 
Aj -f- Aj — A2 3 

Hence, the nonlinear transformation is given by 

Vl = 21 

, 1 2 
y2 = -2 + 0^1 

(2.20) 

(2.21) 
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W(0,0) 

Figure 2.4: Unstable manifold at EP, (0,0) 

Now unstable eigenspace in the z-space corresponding to eigenvalue 1 is given by: 

£"(0,0) = {ui,22)€/?2 1^2 = 0} 

Transforming the above relation to the y-space and then to the x-space 

XI = zi 

12 = 5^1 (2-22) 

1 0 which simplifies to X2 = jxj. This can be written as in (2.19). Hence, using 

the normal form transformation and associated unstable eigenspace, the unstable 

manifold of an equilibrium point is computed. 

2.7 Summary 

This chapter provides the background materials for the normal form method to 

approximate the stability boundary around the UEP of interest. The motivation for 
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real normal form method has been discussed. The key idea of normal form method 

has been explained. For normal form method several interesting articles are available 

in the literature. Authors in [27, 28] provide the basic concept, foundation on the 

modem theory of normal forms for nonlinear vector fields. An example of La operator 

for real normal form transformation is also presented in this chapter. The concept 

of normal form based approximation of invariant mcinifold is explained with a simple 

example in this chapter. The next chapter will present a systematic procedure to 

approximate the stability boundary around the UEP of interest. 
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3. APPROXIMATION OF STABILITY BOUNDARY 

3.1 Linear Analysis around the UEP 

Equation (2.1) is expanded at an UEP by Taylor series. The Jacobian of the 

Taylor series is used to find the eigenvalues, and eigenvectors. The linear system of 

(2.1) is given by 

X = Ax (3.1) 

Matrix A i s  N  x  N .  \ i  A  has N distinct eigenvalues then it will also have N corre­

sponding linearly independent x 1 right eigenvectors Uj, i = I, N and A'" x 1 left 

eigenvectors VJ, which are related by the following equations: 

AUi =  XiUi i = l ,  ,N (3.2) 

A^Vj = \jVj j = l, ,N (3.3) 

Let U he a. matrix of right eigenvectors eind V be a matrix of left eignevectors, 

then we have the following relationship: 

v'^U = Iff (3.4) 

where i s  N  x  N  identity matrix. The so-called participation factor [29], p ^ j ,  is 

given by, 

Pij — (3-5) 
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Physically the participation factor p^j gives a measure of the participation of 

i— state variable in the j— mode. 

3.2 Coefficient of Curvature 

Let us consider z = {0, be any point in the z-space, where zj is any 

constant number, say 1.0. This point can be transformed to y-space via y = z-'rh2r{z) 

as y = {Vh -••'fiv}' where 

N N 
f'i = + E E ' = 1. («•«) 

j=l k=j 

Further substitution of z gives: 

yi = j, i = l,JV 

y'j = '3 + (3-7) 

When we transform back y to the x-space via x = Ury we get x which can be written 

as X = {ii, ,x}v}-

In compact form we can write 

fi = UrijZj + [Uriihlljj + ... + UriNk2f^jj)zf (3.8) 

= Urijz'j + TijZj^, i = 

where T ^ j  = [Uriih2}.jj + ... + Uri]\jh2^jj]. From equation (3.8), we get 

d^Xi 
^ = 2r,-,- (3.9) 
dzj^ ^ '  

From the above expressions, we can correlate any particular state variable x^ to the 

curvature which is given by h2r- The main point is that instead of using only h2r. 
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we can use the sum of the product given by T^j to find how the curvature is reflected 

in the state variable, due to the mode. The product as mentioned will be 

used as a measure to indicate the curvature along a system variable direction. 

Hence, a new parameter F is used to define a relationship between the state 

variable i and the curvature due to mode j: 

^ I 
Tii = E (3.10) 

k=l 

The way the above formulation is made is to find a relation between a state 

variable i and a mode j. It is also possible to find a new parameter Fy^ to find a 

relation among a state i and two modes j and k. The idea for this derivation is as 

follows. In the previous formulation, only one component in a particular direction in 

the z-space is considered. As an example, for a vector {0,0,....,q:,...,0} in the z-space, 

Fjj is computed. Now considering all nonzero elements in any particular direction, 

we have 
N 

(3.11) 
;=i 

Where y: is given by 

N N . 
yj = + E iZ ^^rkl~k~l (3-12) 

k=l l=k 

Hence, we get Xj as 

N N N N . 
Xi= ^rijZj + Y. ̂ rij 1] ^^rkl^k~l (3-13) 

j=l j=l k=l l=k 

From equation (3.13) the following parameter is derived to find a relation among a 

state i and two modes j and k as follows. 

dzjdlf, 
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The above expression caxi be written explicitly in terms of h2r and Ur- From 

equation (3.13) the following relation among a state i and two modes j and k is 

obtedned: 

^ = (3.15) 

Hence, 

^ 7 
= L (3.16) 

/=1 

3.3 Approximation of the Manifold of the UEP 

As the system represented by equation (2.12) is linear ajad diagonal, the eigen­

vector corresponding to the system is obtained as a canonical set of vectors. 

For the normal form system, we get N — 1 dimensional stable manifold, and 1 

dimensional unstable manifold associated with the type-1 UEP. This — 1 stable 

manifold is represented by — 1 straight lines in the z-space. They are given as 

[aj,0,... , ,  ..0]^, [0,©2,0,... . ,  0]^, ...[0, -—aj,0,..,0]^, is a real number; where i = 

1, ..N zuid i ^ j; j— mode is unstable. Now if we transform the i— stable eigenvector 

to the y coordinate, we get [^2J^q?, ...., aj + 0,..., h2^a|] . This i— stable 

eigenvector in zi coordinate space can be further transformed back to the x coordinate 

space as [t/i,-A2j-a?,..., Uaiai + fe2^-,-a?)., Up^ih2f(a^f. 

As done for the i— stable eigenvector, we can transform all the A'^ — 1 stable 

eigenvectors to the original x coordinate. Thus, we approximate the stable manifold 

up to the higher order term retained in the Taylor series expression (second order in 

this dissertation). 



www.manaraa.com

26 

3.4 Display of Boundary 

Under certain conditions (see [6]) the stability boundary of an SEP is the union of 

the stable manifolds of the UEPs on the boundary. Near each UEP an approximation 

of the stability boundary can be obtained as follows: compute the normal form at 

the UEP (in this work up to 2^^ order); approximate the stable manifold in the 

z-space by the stable subspace; transform this subspace using Ur and h2r back into 

the x-space, i.e., to the machine variables. For a type-1 UEP stability boundary 

around the UEP is an (A^ — 1) dimensional hypersurface in N dimensional space. 

For a laxge power system, it is not possible to display the boundary in the large 

dimensional space. Hence, select a 3 dimensional angular subspace to display the 

approximated stability boundary graphically. In most angular directions, the stable 

manifold is relatively 'flat' i.e. looks like a subspace. The important directions axe 

those with high F coefficients, usually they axe the variables corresponding to the 

advaxiced machines in the UEP. 

3.5 Potential Energy 

The system of equations is formulated in synchronous reference frame with the 

machine taken as reference. With uniform damping we have 2n—2 state variables 

for an n machine system. They are l,n}-

The closed form expression of energy in the center of inertia (COI) reference 

frame [5] is used here. Using the linear angle path assumption for the dissipation 

terms between a point on the boundary, 0^, and the postfault SEP, 9^ the potential 

energy is given by: 
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=  -  E  A '  {^\-^i) - E E  [Cij{cose\j -cosefj) 
i=i ^ ^ i=i j=i+i 

-  Dijlijisine^i -  sin9fi)] 'z;- (3.17) 

of-ef+e^~0^, « 

Where I^j = ——^ ^ and - EfG^. To use the energy expression 

in COI frame, the following relationship is made [30]: 

hn 

hn = 

^n—l,n 

M, 71 — 1 

Ml 

Ml 
Mn 

Mo 
70;r 
M9 

On — 
1 n—1 

^n—1 

1 I -^n—1 

^1 

^2 

^n—1 

(3.18) 

E (3.19) 

In the above expression, 9 is in the COI frame. The approach used is as follows. We 

will pick up several points in the z-space on the linear manifold. These points (in the 

z-space) are transformed to the x-space (see section 3.3). The points obtained in the 

x-space axe real. These points will be substituted in the energy expression to find 

the energy. 

3.6 Computation of Distance 

In this dissertation, the distance between a postfault SEP 6^ and any point 6 on 

any manifold as is given by; 

N 

\i=l 

where N is dimension of the system. The norm defined, eis above is known as norm-2. 
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3.7 Computational Steps 

For any operating condition the following steps axe performed to find an approx­

imate estimate of the stability boundary for a power system, near the controlling 

UEP. 

1. Reduce the power system network to the internal machine buses. 

2. Find the controlling UEP using a direct stability program, e.g., the TEF [31], 

for a given disturbance. 

3. Find the Jacobian and the Hessiain matrices at the UEP. 

4. Conduct linear cincJysis to obtain the eigenvalues and eigenvectors. 

J 
5. Do similarity transformation to the 2"° order terms. 

6. Compute the A2r, and the F coefficients. 

7. Approximate the stable manifolds. 

8. Project the stable manifolds to the angle subspace, and hence, display the shape 

of the approximated boundary. 

9. Compute potential energy, and distance of the manifold from the SEP. 

The overall approach is summarized in Figure 3.1. It also shows steps involved in 

the present methodology for the approximation of stable manifold of the controlling 

UEP which is a portion of the boundary. 



www.manaraa.com

29 

Taylor's 

Series atanEP 

Similarity 
Transformation X=UY 

Nonlinear 
Transformation 

UseU 
Y = Z+h2(Z: 

and h2's 

Z =JZ 
Linear System 

Y = JY + Y2 
Jordan System 

Eigenspace of 
Transformed System 

X = AX + X2 

Approx. stable manifolds 

of an UEP of x = f(x) 

and local stability boundary 

Nonlinear Diff Eqn 

k =f(x) 

Figure 3.1: Solution steps 
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3.8 Summary 

This chapter presents computational steps involved in approximating the stable 

manifold of a UEP of interest using the real normal form of vector fields. For any 

operating condition, we take points ( 3 points are taken here) on each linear meinifold. 

For the purpose of computing energy and distance, the three points taken are for 

Q = — 1,Q = 0, and Q = 1. a = 0, is the controlling UEP itself. For each point (say 

a = 1) on any manifold, we compute norm between this point, and the postfault 

SEP of the system. We compute potential energy at that point with respect to the 

postfault SEP. Note that for the computation of the energy and the norm, each point 

in the z-space is transformed back to x-space The next chapter provides numerical 

results to the concepts developed in this chapter. 
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4. NUMERICAL RESULTS 

This chapter contains numerical results on different issues discussed in chapter 3. 

The results are presented on the following: 

• The effect of fault location, and loading of critical generators, and number 

of lines opened to clear the fault, on the system eigenvalues, the interaction 

coefficients, h2r and the curvature coefficients, F. 

• The shape of the manifold near the controlling UEP and the size of the region 

of stability. 

• How the system trajectory approaches and leaves the boundary of the region 

of stability. 

• The potential energy and the distance of the manifold from the postfault SEP. 

• Effect of loading of the critical generators on the behavior of faulted trajectory. 

• The behavior of equilibrium points when system is stressed. 

4.1 11 Generator Test System 

An 11 generator test system is used in this work. The 11 generator system 

comprises 55 buses and 183 lines [32]. Figure 4.1 provides a one-line diagram of the 
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5 

Figure 4.1: One-line diagrann of 11 generator test system 
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11 generator test system. Fault locations axe marked with 'X' in Figure 4.1. Results 

for three disturbances axe given here: 

• A three-phase fault at bus # 226, cleared at 0.068 second by opening lines 

226-145, 144-145, 146-226, and 144-146. 

• A three-phase fault at bus # 996, cleared at 0.068 second by opening lines 3-996 

(2 lines), 297-996 (3 lines). 

• A three-phase fault at bus # 150, cleared at 0.068 second by opening lines 

150-458, 150-288, 150-3 (2 lines), and 150-297. and 226-145. 

4,2 Simulation of Stress in a System 

A power system can become stressed in a variety of ways. They are: heavier 

loading of some generators, heavier loading of some portion of the transmission net­

work, and when it is subjected to severe faults. Stress eilso depends on the location of 

fault and the postfault network configurations. This dissertation considers the stress 

due to fault location, loading of some generators and the post fault system network. 

In this simulation, Case2 is more stressed than Casel and Case3 is more than Case2 

and so on. 

Table 4.1 conteiins generations for different operating conditions. This Table 

corresponds to faults at bus # 996 and bus # 150. We see that the generation at 

generators 3 and 5 is increased to cause more stress in the system. For fault at 

bus # 226, the loading at the generators are different as the advanced machines axe 

different. Table 4.2 contains generations at the critical generators for fault at bus # 
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Table 4.1: Loading at the generators, for faults at 996, 150 

Gen Casel Case2 Case3 Case4 Case5 

# MW MW MW MW MW 

1 6357.5 6357.5 6357.5 6357.5 6357.5 
2 1669.4 1669.4 1669.4 1669.4 1669.4 
3 2149.2 2499.2 2699.2 2799.2 2949.2 
4 500.0 500.0 500.0 500.0 500.0 
5 2149.2 2499.2 2699.2 2799.2 2949.2 
6 300.0 300.0 300.0 300.0 300.0 
7 600.0 600.0 600.0 600.0 600.0 
8 700.0 700.0 700.0 700.0 700.0 
9 2827.6 2827.6 2827.6 2827.6 2827.6 

10 5329.5 5329.5 5329.5 5329.5 5329.5 
11 241880.0 240840.0 240410.0 240190.0 239860.0 

Table 4.2: Generation at critical generators, fault at 226 

Generator Casel Case 2 Case3 Case4 Case 5 

# MW MW MW MW MW 
6 200 300 100 350 150 
7 500 600 200 650 250 
8 600 700 1300 700 1350 

226. Generations at the rest of the generators are the same as in Table 4.1 except 

for generator 11, which is a slack bus. 

Generators where loading is increased are the "critical generators" whose loading 

greatly influences stability behavior. These generators are the advanced generators 

in the UEP. They are identified by a special procedure used in the TEF method of 

direct stability analysis. For a fault at bus # 226 the critical generators are generator 

numbers 6,7, and 8; for a fault at bus # 150, or at bus # 996, the critical generators 

are numbers 3 and 5. 
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For each of the above mentioned cases Taylor series expansion of the system 

equations is made at the controlling UEP, and reaJ normal form transformation is 

performed. 

4.3 UEP Angles and System Eigenvalues 

4.3.1 Effect of loading of critical generators 

The UEPs for different loading cases for a fault at bus # 226 are presented in 

Table 4.3. For each case the advanced generators at the UEP are the same. It means 

that the same critical generators appear in all the UEPs but the magnitude of their 

angles in the UEP could be different for different cases. Eigenvalues are computed 

at the controlling UEP for a 3 phase fault at bus # 226 and are given in Table 

4.4. Controlling UEPs for a fault at bus # 996 are given in Table 4.5. The angles 

presented in COI reference frame aure given in degrees. Tables 4.4 and 4.6 show how 

real eigenvalues decrease with increased loading in the system. 

4.3.2 Effect of fault location and postfault network 

Tables 4.7 and 4.8 present controlling UEP angles and eigenvalues at this UEP 

for a 3 phase fault at bus # 150. Casel corresponds to 3 lines removal and Casell to 

5 lines removal at fault clearing at same loading condition. It has been observed from 

these two Tables that for this 11 generator test system, the system is more affected 

by change in loading than by change of postfault system network. 
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Table 4.3: Controlling UEPs for a fault at bus 226 

Generator Casel Case2 Case3 Case4 Case5 
deg deg deg deg deg 

1 28.962 27.123 26.934 25.292 23.463 
2 26.444 24.261 24.023 22.031 19.758 
3 44.952 42.504 42.257 40.163 37.811 
4 21.005 18.808 18.576 16.613 14.389 
5 42.484 40.054 39.808 37.717 35.365 
6 145.251 122.636 112.507 111.217 91.347 
7 149.599 125.054 116.655 112.621 94.286 
8 147.909 123.014 132.349 109.635 108.839 
9 -6.955 -7.192 -7.192 -7.569 -7.927 

10 21.113 19.562 19.562 18.066 16.609 
11 -6.509 -5.638 -5.638 -5.117 -4.615 

4.4 Nonlinear Interaction Coefficients, h2r 

Here, one of the subjects of interest is the h2r{z) part of equation (2.11) in 

the normal form transformation. It represents the nonlinear interaction between the 

natural modes, and reflects the degree of "curvature" that exists in the normal form 

state space as compared to the original state space. This curvature is reflected in the 

invariant manifolds, i.e., the more stressed the power network, the more "curved" 

some of the manifolds will become. Since the manifolds form the boundary of the 

stability region, they present us with an opportunity to study the effect of stress (due 

to loading) on the behavior of the stability boundary, (approximated by the normal 

form transformation). 
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Table 4.4: Eigenvalues at the controlling UEP, fault at bus 226 

Casel Case2 Case3 Case4 Case5 
2.381 1.845 1.829 1.488 -0.050-fl0.838j 

-2.481 -1.945 -1.929 -1.588 -0.050-10.838j 
-0.050+2.185j -0.050-|-2.468j -0.050-f-2.486j -0.050-f 2.660j -0.050+ 9.913j 
-0.050-2.185j -0.050-2.468j -0.050 -2.486j -0.050-2.660j -0.050 -9.913j 

-0.050-i-10.562j -0.050+10.697j -0.050-M0.705j -0.050-fl0.773j 1.108 
-0.050-10.562j -0.050-10.697j -0.050-10.705j -0.050-10.773j -1.208 

-0.050-f 9.653j -0.050-h 9.782j -0.050-l-9.788j -0.050-f 9.852j -0.050-f2.832j 
-0.050-9.653j -0.050-9.782j -0.050-9.788j -0.050 -9.852j -0.050-2.832j 

-0.050-1- 8.725j -0.050+8.824j -0.050-f8.830j -0.050-f 8.886j -0.050+8.940j 
-0.050-8.725j -0.050-8.824j -0.050-8.830j -0.050 -8.886j -0.050-8.940j 

-0.050-f8.528j -0.050-f8.676j -0.050-f8.683j -0.050-f 8.758j -0.050-f8.829j 
-0.050-8.528j -0.050-8.676j -0.050-8.683j -0.050-8.758j -0.050-8.829j 

-0.050-|-7.439j -0.050-l-7.512j -0.050-f7.517j -0.050-f6.209j -0.050-f7.606j 
-0.050-7.439j -0.050-7.512j -0.050-7.517j -0.050-6.209j -0.050-7.606j 

-0.050-1-7.118j -0.050-H7.332j -0.050-f 7.190j -0.050-f6.421j -0.050-f6.276j 
-0.050-7.118j -0.050-7.332j -0.050-7.190j -0.050-6.421j -0.050-6.276j 

-0.050-H6.006j -0.050-1-6.131j -0.050-f 6.137j -0.050-f7.562j -0.050 -f7.415j 
-0.050-6.006j -0.050-6.131j -0.050-6.137j -0.050-7.562j -0.050-7.415j 

-0.050-|-6.043j -0.050-h6.293j -0.050-f6.316j -0.050-f7.447j -0.050-f6.567j 
-0.050-6.043j -0.050-6.293j -0.050-6.316j -0.050-7.447j -0.050-6.567j 
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Table 4.5: Controlling UEPs for a fault at 996 

Generator Case2 Ccise3 Ccise4 
deg deg deg 

1 71.941 62.091 54.971 
2 66.927 58.826 52.327 
3 98.383 93.289 87.846 
4 64.458 56.032 49.317 
5 96.251 91.175 85.783 
6 73.459 66.497 60.791 
7 75.252 68.383 62.727 
8 73.568 66.629 60.928 
9 11.791 6.299 2.959 

10 63.243 51.632 44.045 
11 -7.874 -6.921 -6.203 

Table 4.6: A at the controlling UEP, fault at 996 

Ceise2 Case3 Ccise4 
1 2.165 -0.050 10.323j -0.050-l-10.403j 
2 -2.265 -0.050-10.323j -0.050-10.403j 
3 -0.050-l-10.269j -0.050 +9.685j -0.050-1- 9.794j 
4 -0.050-10.269j -0.050 -9.685j -0.050 -9.794j 
5 -0.050 -h9.542j 1.698 1.251 
6 -0.050 -9.542j -1.798 -1.351 
7 -0.050 -F3.087j -0.050 +3.229j -0.050 -)-3.338j 
8 -0.050 -3.087j -0.050 -3.229j -0.050 -3.338j 
9 -0.050 -f-5.229j -0.050 +5.340j -0.050 -l-5.470j 

10 -0.050 -5.229j -0.050 -5.340j -0.050 -5.470j 
11 -0.050 -|-6.246j -0.050 +8.341j -0.050 -f-8.474j 
12 -0.050 -6.246j -0.050 -8.341j -0.050 -8.474j 
13 -0.050 4-8.174j -0.050 +7.945j -0.050 -h7.979j 
14 -0.050 -8.174j -0.050 -7.945j -0.050 -7.979j 
15 -0.050 -l-7.912j -0.050 -l-7.842j -0.050 -h7.899j 
16 -0.050 -7.912j -0.050 -7.842j -0.050 -7.899j 
17 -0.050 -t-7.809j -0.050 -h6.700j -0.050 -h6.964j 
18 -0.050 -7.809j -0.050 -6.700j -0.050 -6.964j 
19 -0.050 -i-6.952j -0.050 +6.990j -0.050 -F7.018j 
20 -0.050 -6.952j -0.050 -6.990j -0.050 -7.018j 
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Table 4.7: Effect of line removal on UEP 

Generator Casel Casell 
deg deg 

1 94.217 93.661 
2 84.167 84.838 
3 102.439 102.158 
4 78.816 79.183 
5 99.867 99.798 
6 74.731 71.436 
7 77.705 74.433 
8 76.530 73.253 
9 32.163 31.368 

10 96.091 95.117 
11 -9.729 -9.590 

Table 4.8: Effect of line removal on A 

Case! Casell 
3.01 + O.OOj 3.03 -H O.OOj 

-3.1H- O.OOj -3.13 -f O.OOj 
-0.05 + 10.36j -0.05 -i- 10.37j 
-0.05 - 10.36j -0.05 - 10.37j 
-0.05 -H 9.51j -0.05 -t-9.56j 
-0.05 - 9.51j -0.05 -9.56j 

-0.05 -h 2.92j -0.05 -1- 2.43j 
-0.05 - 2.92j -0.05 - 2.43j 

-0.05 -t- 4.23j -0.05 -H 4.31j 
-0.05 - 4.23j -0.05 - 4.31j 

-0.05 -f 5.09j -0.05 + 4.96j 
-0.05 - 5.09j -0.05 - 4.96j 

-0.05 + 6.83j -0.05 + 6.81j 
-0.05 - 6.83j -0.05 - 6.81j 

-0.05 -f- 8.25j -0.05 -f- 8.25j 
-0.05 - 8.25j -0.05 - 8.25j 

-0.05 -1- 7.88j -0.05 -f 7.89j 
-0.05 - 7.88j -0.05 - 7.89j 

-0.05 -f 7.81j -0.05 -|- /.79j 
-0.05 - 7.81j -0.05 - 7.79j 
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4.4.1 Effect of loading of critical generators 

Table 4.9 shows a few of the h2r coefficients for the fault at bus # 226 case. The 

magnitude of h2r coefficient is indicative of the amount of the interaction coefficients 

caused by the stress in the system. Thus, more stressed the system becomes the 

greater the magnitude of h2r', as is shown in columns 4-7 of Table 4.9. We note, 

however, that the increase in the magnitude of h2r is not uniform in all directions, 

as shown in the last column of Table 4.9. Thus, it appears that the more stressed the 

power system becomes, the more curved the boundary of the region of stability, as 

indicated by the size of the h2r coefficients. However, the curvature tends to increase 

in certain directions (see subsection 4.6.1). 

4.5 r Coefficients 

4.5.1 Effect of loading of critical generators 

Tables 4.10 and 4.11 contain a few of the curvature coefficients F for a fault 

at bus # 226 and for a fault at bus # 996 for different conditions of stress (due 

to loading), respectively. From Tables 4.10 and 4.11 we see that F increcises with 

increased stress. It is evident that the size of the curvature coefficient F is higher in 

the state variables corresponding to the advanced machines. 

4.5.2 Effect of fault location and postfault network 

Stress in the system is created by (1) shifting generation to the "advanced ma­

chines", (2) fault at different locations with varying durations and (3) removing more 

lines at fault clearing. But it has been observed that for the present test system, the 



www.manaraa.com

41 

Table 4.9: A few h2r coeflBcients for a fault at bus 226 

i j k Case 1 Case 2 Case 3 Case 4 Case 5 
1 1 1 0.054 -0.118 0.120 -0.202 0.001 
1 1 2 0.100 0.214 0.219 -0.361 0.000 
2 1 1 0.018 0.040 0.041 -0.069 0.000 
2 1 2 -0.108 0.235 -0.241 0.403 -0.001 
2 2 2 -0.050 -0.107 -0.109 0.180 0.000 
2 2 4 0.042 0.064 0.064 -0.076 0.000 
3 1 2 -0.166 0.193. -0.194 0.209 0.002 
3 1 4 -0.020 0.080 -0.082 0.141 -0.001 
3 2 4 -0.018 -0.069 -0.071 0.122 -0.002 
3 3 3 -0.068 -0.048 -0.047 0.037 -0.006 
3 4 4 -0.135 -0.096 -0.094 0.075 -0.005 
3 9 9 -0.069 -0.060 -0.057 0.052 0.003 
3 10 10 -0.071 -0.058 -0.060 0.054 0.003 
4 1 1 0.032 0.046 0.046 -0.053 0.000 
4 1 3 0.031 -0.099 0.101 -0.160 0.001 
4 2 3 0.030 0.093 0.095 -0.147 0.001 
4 3 4 0.135 0.096 0.094 -0.075 0.005 
5 2 6 -0.033 -0.093 -0.097 0.290 0.000 
5 5 6 0.001 0.001 -0.001 0.001 0.717 
5 6 6 0.002 0.002 -0.002 0.002 0.117 
5 6 8 -0.001 0.001 0.001 0.001 -0.052 
6 2 5 0.033 0.092 0.096 -0.289 0.000 
6 5 5 -0.001 -0.001 0.001 -0.001 0.140 
6 5 6 -0.002 -0.002 0.002 -0.002 0.822 
6 5 8 0.000 0.000 0.000 0.000 0.061 
6 6 6 0.000 0.000 0.000 0.000 -0.359 
6 6 8 0.000 0.000 0.000 0.000 0.094 
7 5 5 -0.001 0.001 0.001 0.001 0.078 
7 5 6 -0.002 0.002 0.002 0.002 0.241 
7 5 7 -0.002 -0.002 0.002 -0.002 -0.964 
7 5 8 -0.001 -0.001 0.001 -0.001 -0.163 
7 6 6 -0.001 0.001 0.001 0.001 0.067 
7 6 7 -0.001 -0.001 0.001 -0.001 -0.107 
7 6 8 -0.002 -0.002 0.002 -0.002 -0.086 
8 5 5 0.000 0.000 0.000 0.000 0.060 
8 5 7 0.001 0.001 -0.001 0.001 0.409 
8 5 8 0.001 0.001 -0.001 0.001 -0.619 
8 6 7 0.001 0.001 -0.001 0.001 0.103 
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Table 4.9 (Continued) 

i j k Case 1 Case 2 Case 3 Case 4 Case 5 
9 6 10 0.000 0.000 0.000 0.000 -0.164 
9 7 15 0.000 0.000 0.000 0.000 0.081 
9 8 16 0.000 0.000 0.000 0.000 -0.087 

10 6 9 0.000 0.000 0.000 0.000 0.164 
13 2 12 -0.035 -0.009 -0.009 0.112 0.000 
14 2 11 0.031 0.008 0.008 -0.086 0.000 
15 1 15 0.015 -0.037 0.061 -0.060 0.000 
15 2 15 0.004 -0.017 -0.020 0.106 0.000 
15 2 16 -0.010 -0.016 -0.018 -0.279 0.000 
15 2 19 0.001 -0.001 0.002 -0.061 0.000 
15 2 20 0.000 0.002 0.001 0.130 0.000 
15 5 9 0.000 0.000 0.000 0.000 -0.115 
15 5 10 0.000 0.000 0.000 0.000 0.098 
15 15 19 0.001 0.002 -0.005 -0.189 0.000 
15 15 20 -0.001 -0.003 -0.003 0.160 0.000 
15 16 20 -0.002 -0.002 -0.004 0.439 0.000 
16 2 15 0.009 0.017 0.020 0.273 0.000 
16 14 15 0.000 0.000 0.000 -0.152 -0.004 
16 15 19 0.001 -0.002 0.002 -0.350 0.000 
16 15 20 0.004 0.001 0.003 0.423 0.000 
16 16 19 -0.003 0.001 0.001 -0.745 0.000 
16 16 20 0.000 0.001 -0.002 -0.262 0.000 
17 2 9 0.186 0.055 -0.081 0.010 0.000 
17 2 10 -0.230 -0.067 0.097 -0.013 0.000 
17 2 15 0.001 0.059 -0.387 0.000 0.000 
17 2 16 -0.002 -0.119 0.808 0.000 0.000 
18 2 9 0.177 0.048 -0.075 0.012 0.000 
18 2 15 0.003 0.104 -0.715 0.000 0.000 
18 6 17 0.000 0.000 0.000 0.000 -0.138 
18 16 17 0.000 0.000 0.000 0.001 0.129 
19 2 18 0.005 0.008 0.133 0.000 0.000 
19 2 19 0.011 0.483 0.835 0.022 0.000 
19 2 20 -0.084 -1.641 -2.980 0.021 0.000 
20 2 17 -0.005 -0.008 -0.132 0.000 0.000 
20 2 19 0.083 1.605 2.919 -0.021 0.000 
20 2 20 -0.003 -0.116 -0.200 -0.004 0.000 
20 18 19 0.173 -0.175 -0.176 0.000 -0.002 
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Table 4.10: A few for fault at bus 226 

i j Casel Case2 Case3 Case4 Case5 
1 3 0.010 0.007 0.007 0.005 0.001 
1 4 0.020 0.014 0.013 0.010 0.002 
2 4 0.022 0.015 0.015 0.011 0.002 
2 9 0.011 0.009 0.009 0.008 0.007 
2 10 0.011 0.009 0.009 0.008 0.007 
3 3 0.010 0.007 0.007 0.005 0.002 
3 4 0.022 0.015 0.014 0.011 0.002 
3 9 0.011 0.009 0.009 0.008 0.007 
3 10 0.011 0.009 0.009 0.008 0.007 
4 3 0.010 0.006 0.006 0.004 0.002 
4 4 0.022 0.015 0.014 0.011 0.002 
4 9 0.011 0.009 0.009 0.008 0.007 
4 10 0.011 0.009 0.009 0.008 0.007 
5 10 0.011 0.009 0.009 0.008 0.007 
6 1 0.007 0.021 0.021 0.042 0.000 
6 2 0.006 0.018 0.018 0.035 0.000 
6 3 0.012 0.005 0.005 0.001 0.001 
6 4 0.015 0.007 0.007 0.002 0.001 
6 5 0.003 0.002 0.002 0.001 0.101 
6 6 0.003 0.002 0.002 0.001 0.082 
6 10 0.010 0.007 0.007 0.006 0.004 
6 17 0.006 0.004 0.004 0.004 -0.023 
6 18 0.006 0.004 0.004 0.004 -0.023 
6 19 -0.003 -0.005 -0.006 -0.012 -0.015 
6 20 -0.003 -0.006 -0.007 -0.012 -0.014 
7 1 0.006 0.019 0.020 0.040 0.000 
7 2 0.006 0.016 0.017 0.034 0.000 
7 3 0.012 0.005 0.005 0.000 0.001 
7 4 0.015 0.007 0.007 0.002 0.001 

5 0.003 0.002 0.002 0.001 0.100 
7 6 0.003 0.002 0.002 0.001 0.081 
7 15 -0.004 -0.008 -0.010 -0.009 0.002 
7 16 -0.005 -0.008 -0.010 -0.009 0.002 
7 17 0.006 0.004 0.004 0.004 -0.023 
7 18 0.006 0.004 0.004 0.004 -0.023 
7 19 -0.004 -0.006 -0.006 -0.012 -0.015 
7 20 -0.004 -0.006 -0.006 -0.011 -0.015 
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Table 4.11: A few T^j for fault at 996 

i j C<ise2 Case3 Case4 
1 5 -0.002 0.024 0.059 
2 5 -0.001 0.019 0.052 
3 5 -0.002 0.023 0.063 
3 6 -0.002 0.020 0.052 
4 5 -0.001 0.021 0.056 
0 5 -0.002 0.023 0.062 
5 6 -0.002 0.020 0.051 

10 5 -0.002 0.026 0.060 
10 6 -0.002 0.022 0.050 
11 5 0.000 0.080 0.147 
11 6 0.000 -0.073 -0.131 
12 5 0.001 0.065 0.130 
12 6 0.000 -0.058 -0.115 
13 5 0.001 0.080 0.157 
13 6 0.001 -0.072 -0.139 
14 5 0.005 0.072 0.141 
14 6 0.007 -0.065 -0.125 
15 5 0.001 0.078 0.155 
15 6 0.001 -0.070 -0.137 
16 5 0.000 0.035 0.085 
16 6 0.000 -0.031 -0.074 
17 5 0.000 0.033 0.082 
17 6 0.000 -0.029 -0.071 
18 5 0.000 0.035 0.085 
18 6 0.000 -0.031 -0.074 
19 5 -0.001 0.040 0.068 
19 6 -0.001 -0.036 -0.061 
20 1 0.056 0.004 0.004 
20 2 -0.052 0.004 0.004 
20 5 -0.001 0.088 0.150 
20 6 -0.001 -0.079 -0.134 
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effect of loading the generators has more effect on the h2 and F coeflBcients than the 

number of line clearing conditions. 

4.6 Shape of Manifold Near the UEP and Size of the Region of Stability-

Stable manifold of the controlling UEP in the x-space is computed from the lin­

ear stable manifold of the z-system of (2.12). This linecir manifold is then transformed 

back to the y-space using the equation (2.11). As (2.11) is nonlinear (quadratic), the 

linecir manifold in the z-space becomes parabolic in the y-space and also parabolic 

in the x-space as the transformation from y to x is linear. Thus, the stable mani-
J J 

fold in the x-space is approximated up to 2"" order using 2 order normal form 

transformation. 

4.6.1 Effect of loading of critical generators 

Figure 4.2 shows portion of the stability boundaries with the corresponding SEPs 

for a fault at bus # 996; three different loading cases are shown. The boundary has 

been projected to the angle subspace of machines 1, 2 and 3. In Figure 4.3 the same 

boundary is projected to the angle subspace of generators 3, 1 and 5. We clearly 

see that the boundeiries are more curved in the advanced machines directions (here 

machine 3 and machine 5). Figure 4.4 depicts stability boundaries for a fault at bus 

150. As for the fault at bus # 996, it is clearly seen that the region of stability is 

reduced with the increase in system stress due to loading [33]. This is also true for 

the fault at bus # 150. 
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4.7 Trajectory Behavior Near the Boundary of the Region of Stability 

Figure 4.5 shows how the postfault trajectory approaches the stability boundary 

depending on the clearing time. If the fault is cleared before the critical clearing the 

postfault trajectory returns to the SEP and it follows the unstable manifold within 

the region of attraction. In Figure 4.5, the trajectory leaves the region of attraction 

for a cleciring time of 0.064s whereais it is stable for 0.048s clearing. Figures 4.6 and 

4.7 display similar phenomenon in two dimensional subspace. 

4.7.1 Behavior of system trajectory near the UEP 

Figure 4.8 expleiins the behavior of the faulted trajectory near the UEP. Figure 

4.8 corresponds to equivalent one machine connected to infinite bus system. Figure 

4.8.a depicts phase portreiit of the system. The faulted trajectory leaves the region of 

stability depending on the time of fault clearing. In other words, the trajectory leaves 

the region of the stability when the fault is cleared after the critical clearing time. It 

is clear in Figure 4.8.c that the unstable trajectory leaves the boundary and follows 

the unstable manifold of the UEP, and that the stable trajectory follows the stable 

manifold near the UEP and then unstable manifold inside the region of stability of 

the SEP. 

4.7.2 How the faulted trajectory leaves the boundary 

Figures 4.9 and 4.10 show the effect of loading on the behavior of trajectory. 

They show how the trajectory leaves the boundary at higher loading, for the same 

clearing time, and the same fault. The trajectories leave at different edges of the 

boundary when the faults axe cleared after the critical clearing time. 
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4.8 Potential Energy and Distance of Manifold from the Postfault SEP 

4.8.1 Effect of loading of critical generators 

The distance between a postfault SEP, 6^ and any point, 6 on ajiy manifold is 

given by the norm-2, defined as: 

N 
X;(«(i)-«^(i))2 (4.1) 

\i=l 

where N is the dimension of the system. Norm-2 is also known a^ the Euclidean 

distance. For the computation of the energy and norm-2 we take a point on any stable 

eigenvector direction at a distcince a from the UEP. Then that point is transformed to 

the y-space and then to the x-space, then potential energy and norm-2 are computed 

using (3.17) and (4.1). 

Tables 4.12 and 4.13 are for Case2 and Case4 respectively for a fault at bus # 

996. From this data, it is observed that the potential energy is almost constant at 

lower stress. In Table 4.12, the first row corresponds to unstable real eigenvalue and 

the second row corresponds to real stable eigenvalue for C£Lse2. For Case4, the fifth 

row and sixth row of Table 4.13 correspond to real eigenvalues. The potential energy 

varies appreciably for a higher stress as given in Table 4.13 but the change is more 

along the manifold corresponding to real eigenvalues. 

Reference [34] provides a graphical analysis of the potential energy surface around 

the UEP of a stressed power system. It has been shown that the potential energy 

surface around a UEP may be "very steep" in certain directions and "shallow" in 

other directions. The results presented in this chapter support the above mentioned 

observations. 
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Table 4.12: Potential energy and norm for a fault at bus 996, Case2 

Potential Energy Norm-2 
a = —1 a = 0 a = l Q =  —1 Q = 0 a = 1 

2.4016 2.6547 2.4375 2.2761 2.5209 3.1316 
2.4135 2.6547 2.4603 2.2933 2.5209 3.1132 
2.7467 2.6547 2.8571 2.5060 2.5209 2.5180 
2.6379 2.6547 2.6374 2.7007 2.5209 2.7004 
2.8184 2.6547 2.6035 2.5450 2.5209 2.4910 
2.6523 2.6547 2.6543 2.7078 2.5209 2.7034 
3.1635 2.6547 2.5188 2.4420 2.5209 2.5906 
2.6453 2.6547 2.6557 2.6774 2.5209 2.6776 
2.1115 2.6547 3.6745 2.5227 2.5209 2.4934 
2.6651 2.6547 2.6500 2.6877 2.5209 2.6897 
2.4358 2.6547 3.4456 2.4794 2.5209 2.5521 
2.6845 2.6547 2.6763 2.6957 2.5209 2.7016 
2.9596 2.6547 2.9479 2.4662 2.5209 2.5292 
2.6464 2.6547 2.6464 2.6858 2.5209 2.6860 
2.7265 2.6547 3.0691 2.5110 2.5209 2.5255 
2.6499 2.6547 2.6477 2.7044 2.5209 2.7036 
3.2439 2.6547 2.3844 2.5240 2.5209 2.4945 
2.6382 2.6547 2.6436 2.6949 2.5209 2.6965 
2.7884 2.6547 2.8302 2.5025 2.5209 2.5424 
2.6519 2.6547 2.6516 2.7057 2.5209 2.7068 
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Table 4.13: Potential energy and norm for a fault at bus 996, Case4 

Potential Energy Norm-2 
a = -l a = 0 a = 1 Q = —1 Q = 0 a = 1 

0.2635 0.1176 0.3112 0.8743 0.9142 0.8887 
0.1103 0.1176 0.1101 1.3265 0.9142 1.3263 
0.1166 0.1176 0.1166 1.3390 0.9142 1.3424 
0.2302 0.1176 0.1479 0.9306 0.9142 0.8772 

-0.2978 0.1176 0.0548 2.0602 0.9142 0.5944 
0.0544 0.1176 -0.2262 0.6419 0.9142 1.9998 
0.2737 0.1176 0.4386 0.9263 0.9142 0.8609 
0.1199 0.1176 0.1173 1.2831 0.9142 1.2795 
0.6947 0.1176 0.1106 0.8434 0.9142 0.8761 
0.1084 0.1176 0.1133 1.2956 0.9142 1.2957 
0.5329 0.1176 0.4872 0.8226 0.9142 0.8707 
0.1140 0.1176 0.1143 1.2992 0.9142 1.3017 
0.4619 0.1176 0.2453 0.9119 0.9142 0.8783 
0.1124 0.1176 0.1176 1.3298 0.9142 1.3314 
0.1699 0.1176 0.4697 0.8661 0.9142 0.9037 
0.1146 0.1176 0.1127 1.3241 0.9142 1.3236 
0.5205 0.1176 0.2836 0.9319 0.9142 0.8776 
0.1233 0.1176 0.1252 1.3401 0.9142 1.3281 
0.2739 0.1176 0.2898 0.8951 0.9142 0.9344 
0.1167 0.1176 0.1166 1.3397 0.9142 1.3418 
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4.8.2 Effect of fault location 

Tables 4.14 and 4.15 contain potential energy aind norm-2 for a 3 phase fault at 

bus # 150. For a fault at bus # 226 potential energy and norm-2 are tabulated in 

Tables 4.16 and 4.17. 

Table 4.14: Potential energy and norm for a fault at bus 150, Case2 

Potential Energy Norm-2 
Q = -1 a = 0 a = 1 Q = —1 Q = 0 Q = 1 

4.3944 4.3326 4.5507 2.9701 2.9834 2.9821 
4.3156 4.3326 4.3149 3.1370 2.9834 3.1369 
4.5139 4.3326 4.2618 3.0062 2.9834 2.9555 
4.3302 4.3326 4.3315 3.1429 2.9834 3.1394 
3.9856 4.3326 4.2003 2.7462 2.9834 3.5362 
4.2179 4.3326 4.0008 3.5204 2.9834 2.7609 
3.8563 4.3326 5.0268 3.0672 2.9834 2.9043 
4.3043 4.3326 4.3040 3.1117 2.9834 3.1050 
4.3600 4.3326 4.3600 3.1308 2.9834 3.1233 
3.6667 4.3326 5.4718 2.9914 2.9834 2.9534 
5.2470 4.3326 3.9705 3.0177 2.9834 2.9399 
4.3525 4.3326 4.3632 3.1372 2.9834 3.1317 
4.4844 4.3326 4.4780 3.0052 2.9834 2.9667 
4.3257 4.3326 4.3262 3.1411 2.9834 3.1422 
4.2589 4.3326 4.7619 2.9362 2.9834 3.0052 
4.3295 4.3326 4.3314 3.1302 2.9834 3.1311 
5.0848 4.3326 4.0706 2.9606 2.9834 2.9673 
4.3162 4.3326 4.3225 3.1221 2.9834 3.1261 
4.5799 4.3326 4.5757 2.9877 2.9834 2.9806 
4.3221 4.3326 4.3222 3.1422 2.9834 3.1424 
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Table 4.15: Potential energy and norm for a fault at bus 150, CaseS 

Potential Energy Norm-2 
a = —1 Q = 0 Q = 1 a = —1 a = 0 a = 1 

0.4270 0.3157 0.5218 1.2443 1.2785 1.2623 
0.3056 0.3157 0.3052 1.5982 1.2785 1.5978 
0.3246 0.3157 0.4460 1.2454 1.2785 1.2956 
0.3147 0.3157 0.3138 1.6103 1.2785 1.6121 
0.0158 0.3157 0.2001 2.2348 1.2785 0.9736 
0.0615 0.3157 0.2026 2.1918 1.2785 1.0086 
0.7226 0.3157 0.3076 1.2459 1.2785 1.2699 
0.3015 0.3157 0.3094 1.5308 1.2785 1.5383 
0.1681 0.3157 1.0424 1.2541 1.2785 1.2179 
0.3153 0.3157 0.3090 1.5701 1.2785 1.5713 
0.6652 0.3157 0.6133 1.2650 1.2785 1.2039 
0.3128 0.3157 0.3131 1.5820 1.2785 1.5801 
0.2428 0.3157 0.7808 1.2222 1.2785 1.2622 
0.3071 0.3157 0.3039 1.5890 1.2785 1.5828 
0.5759 0.3157 0.5782 1.2772 1.2785 1.2699 
0.3117 0.3157 0.3117 1.6094 1.2785 1.6097 
0.7639 0.3157 0.4383 1.2978 1.2785 1.2472 
0.3249 0.3157 0.3274 1.6112 1.2785 1.6016 
0.4615 0.3157 0.4935 1.2567 1.2785 1.2998 
0.3132 0.3157 0.3128 1.6096 1.2785 1.6116 
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Table 4.16: Potential energy aind norm for a fault at bus 226, Ccisel 

Potential Energy Norm-2 
a = -1 a = 0 a = 1 Q = —1 a = 0 a = 1 

6.0090 5.9296 5.3753 3.7217 3.9803 4.4721 
5.4059 5.9296 6.0129 4.4584 3.9803 3.7354 
7.1591 5.9296 5.2585 4.2555 3.9803 3.7873 
6.0339 5.9296 6.0800 4.1146 3.9803 4.1265 
6.1431 5.9296 6.1205 3.9904 3.9803 3.9884 
5.9508 5.9296 5.9509 4.1108 3.9803 4.1107 
5.9661 5.9296 6.0637 3.9781 3.9803 3.9948 
5.9432 5.9296 5.9426 4.1070 3.9803 4.1079 
6.4244 5.9296 6.4114 4.0138 3.9803 3.9955 
5.9924 5.9296 5.9924 4.1244 3.9803 4.1251 
6.2983 5.9296 5.9472 3.9987 3.9803 3.9871 
5.9589 5.9296 5.9610 4.1129 3.9803 4.1135 
6.1603 5.9296 6.3154 3.9812 3.9803 4.0011 
5.9526 5.9296 5.9515 4.1097 3.9803 4.1106 
5.9288 5.9296 5.9288 4.0936 3.9803 4.0934 
6.1772 5.9296 6.1731 3.9797 3.9803 3.9685 
6.2307 5.9296 6.2591 3.9814 3.9803 4.0160 
5.9726 5.9296 5.9724 4.1162 3.9803 4.1153 
6.0651 5.9296 6.0905 3.9384 3.9803 4.0156 
5.9289 5.9296 5.9286 4.0950 3.9803 4.0948 
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Table 4.17: Potential energy and norm for a fault at bus 226, CaiseS 

Potential Energy Norm-2 
Q = -1 Q = 0 a = 1 Q = —1 a = 0 a = 1 

0.2669 0.0712 0.2608 0.9251 0.9172 0.9229 
0.0750 0.0712 0.0751 1.3554 0.9172 1.3555 
0.1648 0.0712 0.1376 0.9344 0.9172 0.9157 
0.0737 0.0712 0.0738 1.3564 0.9172 1.3535 

-0.3531 0.0712 0.0325 2.0973 0.9172 0.5523 
-0.2825 0.0712 0.0330 2.0299 0.9172 0.6020 
0.5284 0.0712 0.1158 1.0917 0.9172 0.8278 
0.0753 0.0712 0.0829 1.3162 0.9172 1.3039 
0.5279 0.0712 0.5276 0.9249 0.9172 0.9468 
0.0812 0.0712 0.0812 1.3601 0.9172 1.3614 
0.2996 0.0712 0.2073 0.9326 0.9172 0.9215 
0.0754 0.0712 0.0759 1.3531 0.9172 1.3556 
0.3430 0.0712 0.3836 0.9245 0.9172 0.9467 
0.0754 0.0712 0.0750 1.3529 0.9172 1.3613 
0.3462 0.0712 0.3575 0.9177 0.9172 0.9566 
0.0772 0.0712 0.0772 1.3529 0.9172 1.3521 
0.3715 0.0712 0.3124 0.8923 0.9172 0.8802 
0.0699 0.0712 0.0711 1.3196 0.9172 1.3261 
0.2417 0.0712 0.2261 0.9385 0.9172 0.8659 
0.0709 0.0712 0.0710 1.3308 0.9172 1.3305 
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4.9 Equilibrium Points When System is Stressed 

Table 4.18 shows equilibrium points (EP)s for the three loading conditions. 

Columns 2 and 6 correspond to loading CaseS and columns 3 and 5 correspond to 

loading Case4 eis given in Table 4.1. Generations at generators 3 eind 5 are increzised 

from 2699 MW each in Case3 to 2799 MW each in Case4. Generations in CaseS are 

2899 MW each at generators 3 and 5. The generations at the rest are held constant 

except the generator 11, which is a slack bus. Eigenvalues at these EPs are computed 
J 

and are used to classify these EPs as SEP or UEP. As we move from the 2 column 

to the column, the angles in the SEPs increase; whereas from the 6^^ column 

to the 4^^ column the angles in the UEPs decrease. The point is that we clearly 

see that the SEP and UEP angles tend to move toward each other, and for higher 

loading the SEP and UEP may combine and the SEP disappezirs. In Table 4.18, the 

absence of SEP^ appears to be due to the fact that it coalesced with the UEP^. 

Berggren et aJ [35] developed a conceptual framework for discussing equilibrium 

points, based on simple topological arguments. The authors analyzed certain funda­

mental properties of SEPs and UEPs in stressed power systems. In addition, they 

also show that some of the UEPs can disappear when the loading of the system 

increases. 

4.10 Summary 

This chapter presents numerical results of the proposed methodology to the 11 

generator test system. The relation between the system stress due to loading and 

the boundary of the region of stability has been shown graphically. The shape of the 
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Table 4.18: Equilibrium points, fault at bus 996 

Generator SEP^ SEP^ UEP^ UEP^ VEP^ 
deg deg deg deg deg 

01 34.4212 37.3540 46.9895 55.7975 62.0920 
^2 30.8910 34.3678 44.7318 53.1944 58.8276 
^3 62.2416 67.6700 80.9804 88.8224 93.2862 
^4 27.4015 30.9128 41.4853 50.1995 56.0321 
% 60.3078 65.7344 78.9913 86.7519 91.1763 
^6 41.4015 44.6653 54.0756 61.5868 66.4975 
e-j 43.4143 46.6889 56.0770 63.5236 68.3807 
^8 41.5124 44.7932 54.2287 61.7297 66.6306 
0g -4.2309 -3.6969 -0.5210 3.2515 6.2993 

^10 25.2713 27.4730 35.9139 44.7984 51.6313 
-3.9548 -4.3071 -5.3849 -6.2932 -6.9210 

region of attraction of a power system for different degrees of stress has also been 

displayed. In addition, the behavior of the system trajectory near the UEP and as it 

leaves the boundary is studied. It is shown that when a faulted trajectory leaves the 

region of attraction, it follows the unstable manifold of the UEP. 

It has been observed that the variation in magnitude of h2r with the increase 

in stress due to loading is not uniform in all the directions; it is more curved in the 

direction of the machine variables whose angles are advanced in the UEP. The real 

eigenvalue decreases with the increase in stress. The effect of stress due to more lines 

removal at fault clearing is found to have less effect than loading on h2r, F. 

It has been demonstrated that the stability region shrinks with stress and that 

the SEP and UEP tend to come close to each other. At higher stress the SEP and 

UEP may combine and the SEP disappears, as for Case5 in Table 4.18. 

Potential energy on the approximate boundary has also been computed. It is 
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observed that the potential energy is almost constant in all directions around the 

UEP at lower stress condition but at higher stress it tends to change. It changes 

appreciably along the directions of the majiifolds associated with real eigenvalues. 
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5. MODE OF SYSTEM INSTABILITY 

The three previous chapters presented the formulation, methodology and numer­

ical results of approximating stability boundairy around the controlling UEP using the 

real normal forms of vector fields. This chapter will examine how this approximate 

boundary can be used to study machine separation from the system, when instability 

occurs. 

5.1 Display of Trajectory to the Boundary 

Chapter 4 contains numerical results of the approximate stability boundary 

ciround the controlling UEP for different operating conditions. Figures 4.9 and 4.10 

show how trajectories behave near the UEP. They also show that the postfault sys­

tem trajectories leave at different edges of the boundary for different clearing times, 

if any trajectory leaves the boundary. We now study this behavior to see if it can 

help explain the mode of machine separation from the system. 

The postfault system can be written as equation (2.5). The reduced admittance 

matrix of the postfault system is obtained by running TEFV3.0 [31], a direct stability 

program. This system is integrated using a Runge-Kutta routine [36]. The condition 

at fault clearing is taken as initial condition for the purpose of integration. These 

integration results are also compared with EPRI's ETMSP [37] solution, a time simu­
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lation package for transient stability ajialysis. The next section discusses the scheme 

to explain the mode of system separation. 

5.2 Mode of System Separation 

The steps involved in studying the mode of system separation using the approx­

imate boundary and postfault system trajectory are as follows. 

1. First, the stability boundary around the UEP is drawn, cis done earlier. 

2. Each memifold of the boundary is labeled. 

3. The postfault system is integrated using the integration routine mentioned in 

section 5.1. 

4. These faulted trajectories axe drawn to this boundary for different initial con­

ditions (depending on the fault clearing times). 

5. The boundary is projected to a 2 dimensional angle subspace to show how the 

faulted trajectories cross the boundary, and the postfault trajectories are also 

projected to this angle subspace with different initial conditions. 

It is expected that the faulted trajectories will leave the stability boundary at different 

points depending on the initial conditions. 

Figure 5.1 presents a representative result to show how the postfault system 

trajectories leave the stability boundary for different clearing times. This figure cor­

responds to a 3 phase fault at bus # 150 for a loading CaseS. The stability boundary 

around the controlling UEP and the postfault system trajectories are projected to 

the angle subspace of machines 5 and 1. Not all the manifolds are labeled in this 
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Figure 5.1: Faulted trajectories for different clearing times 
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figure in order that the figure may not be crowded. Note that, in this dissertation, 

the angles in the figures are given in radians. It is clearly seen the trajectories leave 

the boundary at different edges of the boundary depending on fault cleauring time. 

For a clearing time of 0.028s, it leaves at manifold 7 and for a clearing time of 0.048s, 

it crosses boundary at manifold 6. As the clearing time increases, the trajectory 

appears to leave away from the UEP. The postfault trajectory for a fault clearing at 

0.088s, probably leaves the boundary at manifold 11 (extending it) before it crosses 

majiifold 13. 

The crossing of the system trajectory at the edge of the boundary is also com­

puted numerically. However, finding the exact crossing of the trajectory at the bound­

ary is not always possible numerically. As observed in Figure 5.1, the problem is how 

to find the multidimensioned point where it leaves the boundary when projected in 2 

dimensional subspace. To overcome this computational problem, the following step 

is performed. 

Assuming that the UEP is type-1 for the 11 generator test system, the edges of 

the boundary are represented by 19 stable manifolds. Many discrete points are taken 

on the manifolds. The postfault trajectory is then computed using cin integration 

technique. At any instant of time, the Euclidean distance is computed between 

the points on the manifolds and the trajectory; the shortest distance is then taken. 

This distance shows how far is the trajectory from an edge of the boundary. It also 

identifies at, or close to, which manifold the faulted trajectory leaves the boundary. 

For an operating condition, the faulted trajectories, its minimum distance from a 

manifold and the identification of the manifold will be presented in Tables 5.1, 5.2, 

5.3, and 5.4. 
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Table 5.1: Fault at bus 996, Case4, = 0.028s, only eingle components 

61,11 62,11 63,11 64,11 65,11 65,11 67,11 63,11 69,11 610.11 Dist. # 
deg deg deg deg deg deg deg deg deg deg rad 

32.38 30.99 60.37 24.96 58.09 41.64 43.71 41.79 -2.81 23.76 0.84 6 
33.22 32.85 63.02 26.86 61.49 41.92 43.93 42.08 -2.78 23.97 0.77 6 
34.16 34.49 65.76 28.85 64.91 42.21 44.17 42.38 -2.74 24.24 0.70 6 
35.26 35.92 68.52 30.91 68.15 42.53 44.44 42.71 -2.66 24.64 0.63 6 
36.53 37.16 71.25 32.99 71.08 42.92 44.78 43.10 -2.54 25.20 0.57 6 
37.99 38.25 73.88 35.03 73.59 43.39 45.19 43.56 -2.35 25.96 0.51 6 
39.62 39.24 76.36 36.99 75.65 43.96 45.69 44.12 -2.08 26.94 0.46 6 
41.40 40.19 78.60 38.82 77.27 44.63 46.30 44.78 -1.71 28.18 0.41 6 
43.29 41.15 80.56 40.48 78.47 45.43 47.02 45.55 -1.22 29.68 0.36 6 
45.25 42.18 82.16 41.95 79.33 46.35 47.88 46.45 -0.61 31.43 0.31 6 
47.22 43.31 83.39 43.21 79.95 47.40 48.86 47.47 0.15 33.42 0.27 6 
49.15 44.54 84.22 44.27 80.42 48.56 49.97 48.60 1.05 35.63 0.22 6 
51.00 45.88 84.69 45.17 80.83 49.84 51.21 49.86 2.09 38.00 0.19 6 
52.72 47.30 84.86 45.95 81.25 51.23 52.58 51.23 3.27 40.49 0.18 6 
54.29 48.76 84.80 46.65 81.72 52.72 54.07 52.71 4.57 43.02 0.18 6 
55.69 50.22 84.64 47.34 82.29 54.29 55.66 54.27 5.96 45.53 0.18 6 
56.93 51.63 84.51 48.06 82.94 55.93 57.35 55.91 7.41 47.96 0.18 6 
58.01 52.94 84.53 48.85 83.69 57.63 59.12 57.62 8.89 50.22 0.19 6 
58.96 54.12 84.82 49.74 84.51 59.37 60.95 59.38 10.34 52.26 0.18 10 
59.80 55.16 85.47 50.73 85.40 61.14 62.82 61.17 11.73 54.03 0.17 9 
60.58 56.06 86.52 51.83 86.36 62.92 64.71 62.98 13.01 55.48 0.12 9 
61.34 56.84 87.96 53.00 87.39 64.69 66.61 64.79 14.13 56.59 0.09 9 
62.10 57.55 89.75 54.22 88.54 66.46 68.50 66.59 15.06 57.36 0.09 9 
62.89 58.24 91.81 55.48 89.82 68.19 70.35 68.37 15.74 57.79 0.12 9 
63.73 58.97 94.05 56.75 91.29 69.90 72.16 70.11 16.17 57.92 0.17 6 
64.64 59.82 96.37 58.02 92.96 71.56 73.91 71.82 16.33 57.80 0.15 6 
65.62 60.84 98.67 59.30 94.85 73.18 75.60 73.47 16.20 57.48 0.14 6 
66.66 62.08 100.89 60.60 96.95 74.76 77.21 75.07 15.81 57.05 0.13 6 
67.76 63.58 103.00 61.96 99.24 76.30 78.75 76.62 15.18 56.58 0.13 6 
68.91 65.33 104.98 63.40 101.65 77.79 80.23 78.12 14.34 56.16 0.14 6 
70.10 67.34 106.86 64.96 104.14 79.25 81.64 79.57 13.36 55.88 0.17 6 
71.32 69.55 108.67 66.66 106.64 80.67 82.99 80.99 12.31 55.82 0.19 6 
72.60 71.93 110.46 68.52 109.07 82.07 84.29 82.36 11.28 56.04 0.22 6 
73.93 74.41 112.29 70.53 111.39 83.46 85.57 83.72 10.34 56.62 0.25 6 
75.35 76.92 114.21 72.67 113.56 84.84 86.82 85.06 9.60 57.58 0.27 6 
76.87 79.39 116.25 74.92 115.59 86.21 88.07 86.40 9.14 58.96 0.29 6 
78.53 81.77 118.42 77.25 117.48 87.60 89.33 87.74 9.05 60.77 0.31 6 
80.38 84.02 120.73 79.59 119.28 89.00 90.61 89.10 9.37 63.03 0.31 6 
82.45 86.11 123.16 81.93 121.06 90.43 91.93 90.48 10.17 65.71 0.30 6 
84.77 88.05 125.70 84.23 122.90 91.88 93.31 91.90 11.45 68.82 0.29 6 
87.39 89.86 128.33 86.50 124.88 93.38 94.74 93.38 13.23 72.34 0.26 6 
90.34 91.60 131.04 88.75 127.09 94.92 96.24 94.91 15.48 76.26 0.23 6 
97.36 95.17 136.74 93.44 132.49 98.20 99.50 98.19 21.24 85.28 0.24 6 
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Table 5.2: Fault at bus 996, Case4, = 0.0285, angle and speed components 

^1,11 ^2,11 ^3,11 ^4,11 ^5,11 ^6,11 5". 11 ^8,11 ^9,11 ^10,11 Dist. # 
deg deg deg deg deg deg deg deg deg deg rad 

32.38 30.99 60.37 24.96 58.09 41.64 43.71 41.79 -2.81 23.76 2.12 6 
33.22 32.85 63.02 26.86 61.49 41.92 43.93 42.08 -2.78 23.97 2.13 6 
34.16 34.49 65.76 28.85 64.91 42.21 44.17 42.38 -2.74 24.24 2.08 6 
35.26 35.92 68.52 30.91 68.15 42.53 44.44 42.71 -2.66 24.64 1.99 6 
36.53 37.16 71.25 32.99 71.08 42.92 44.78 43.10 -2.54 25.20 1.86 6 
37.99 38.25 73.88 35.03 73.59 43.39 45.19 43.56 -2.35 25.96 1.73 6 
39.62 39.24 76.36 36.99 75.65 43.96 45.69 44.12 -2.08 26.94 1.60 6 
41.40 40.19 78.60 38.82 77.27 44.63 46.30 44.78 -1.71 28.18 1.49 6 
43.29 41.15 80.56 40.48 78.47 45.43 47.02 45.55 -1.22 29.68 1.42 6 
45.25 42.18 82.16 41.95 79.33 46.35 47.88 46.45 -0.61 31.43 1.40 6 
47.22 43.31 83.39 43.21 79.95 47.40 48.86 47.47 0.15 33.42 1.41 6 
49.15 44.54 84.22 44.27 80.42 48.56 49.97 48.60 1.05 35.63 1.46 6 
51.00 45.88 84.69 45.17 80.83 49.84 51.21 49.86 2.09 38.00 1.52 6 
52.72 47.30 84.86 45.95 81.25 51.23 52.58 51.23 3.27 40.49 1.58 6 
54.29 48.76 84.80 46.65 81.72 52.72 54.07 52.71 4.57 43.02 1.62 6 
55.69 50.22 84.64 47.34 82.29 54.29 55.66 54.27 5.96 45.53 1.63 6 
56.93 51.63 84.51 48.06 82.94 55.93 57.35 55.91 7.41 47.96 1.62 6 
58.01 52.94 84.53 48.85 83.69 57.63 59.12 57.62 8.89 50.22 1.58 6 
58.96 54.12 84.82 49.74 84.51 59.37 60.95 59.38 10.34 52.26 1.53 6 
59.80 55.16 85.47 50.73 85.40 61.14 62.82 61.17 11.73 54.03 1.50 6 
60.58 56.06 86.52 51.83 86.36 62.92 64.71 62.98 13.01 55.48 1.49 6 
61.34 56.84 87.96 53.00 87.39 64.69 66.61 64.79 14.13 56.59 1.50 6 
62.10 57.55 89.75 54.22 88.54 66.46 68.50 66.59 15.06 57.36 1.54 6 
62.89 58.24 91.81 55.48 89.82 68.19 70.35 68.37 15.74 57.79 1.59 6 
63.73 58.97 94.05 56.75 91.29 69.90 72.16 70.11 16.17 57.92 1.65 6 
64.64 59.82 96.37 58.02 92.96 71.56 73.91 71.82 16.33 57.80 1.71 6 
65.62 60.84 98.67 59.30 94.85 73.18 75.60 73.47 16.20 57.48 1.78 6 
66.66 62.08 100.89 60.60 96.95 74.76 77.21 75.07 15.81 57.05 1.84 10 
67.76 63.58 103.00 61.96 99.24 76.30 78.75 76.62 15.18 56.58 1.86 10 
68.91 65.33 104.98 63.40 101.65 77.79 80.23 78.12 14.34 56.16 1.90 10 
70.10 67.34 106.86 64.96 104.14 79.25 81.64 79.57 13.36 55.88 1.97 10 
71.32 69.55 108.67 66.66 106.64 80.67 82.99 80.99 12.31 55.82 2.06 10 
72.60 71.93 110.46 68.52 109.07 82.07 84.29 82.36 11.28 56.04 2.15 10 
73.93 74.41 112.29 70.53 111.39 83.46 85.57 83.72 10.34 56.62 2.26 6 
75.35 76.92 114.21 72.67 113.56 84.84 86.82 85.06 9.60 57.58 2.33 6 
76.87 79.39 116.25 74.92 115.59 86.21 88.07 86.40 9.14 58.96 2.41 6 
78.53 81.77 118.42 77.25 117.48 87.60 89.33 87.74 9.05 60.77 2.53 6 
80.38 84.02 120.73 79.59 119.28 89.00 90.61 89.10 9.37 63.03 2.68 6 
82.45 86.11 123.16 81.93 121.06 90.43 91.93 90.48 10.17 65.71 2.86 6 
84.77 88.05 125.70 84.23 122.90 91.88 93.31 91.90 11.45 68.82 3.08 6 
87.39 89.86 128.33 86.50 124.88 93.38 94.74 93.38 13.23 72.34 3.34 6 
90.34 91.60 131.04 88.75 127.09 94.92 96.24 94.91 15.48 76.26 3.63 18 
97.36 95.17 136.74 93.44 132.49 98.20 99.50 98.19 21.24 85.28 4.28 18 
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Table 5.3: Fault at bus 996, Case4, = 0.088s, only angle components 

^l.n ^2,11 ^3,11 ^4,11 ^s.ll ^6,11 ^7,11 ^8,11 ^9,11 ^10,11 Dist # 

deg deg deg deg deg deg deg deg deg deg rad 

34.83 37.03 68.40 30.67 68.36 42.50 44.42 42.70 -2.73 24.36 0.63 6 
37.44 42.93 76.47 36.45 78.38 43.43 45.19 43.67 -2.62 25.10 0.49 6 
40.38 48.39 84.41 42.23 87.62 44.50 46.08 44.78 -2.42 26.14 0.47 6 
43.74 53.34 92.15 47.96 95.82 45.79 47.18 46.08 -2.10 27.58 0.50 9 
47.60 57.77 99.64 53.58 102.90 47.34 48.53 47.63 -1.61 29.55 0.43 9 
51.94 61.73 106.81 59.02 108.88 49.21 50.19 49.48 -0.91 32.12 0.47 9 
56.75 65.29 113.62 64.23 113.89 51.43 52.19 51.66 0.05 35.37 0.57 9 
61.99 68.55 120.00 69.17 118.09 54.03 54.56 54.20 1.31 39.34 0.70 9 
67.59 71.63 125.87 73.82 121.71 57.01 57.35 57.12 2.91 44.06 0.82 6 
73.50 74.69 131.20 78.20 124.96 60.39 60.55 60.42 4.89 49.54 0.81 6 
79.65 77.87 135.95 82.35 128.06 64.16 64.17 64.11 7.28 55.78 0.77 6 
86.00 81.30 140.11 86.36 131.23 68.31 68.23 68.18 10.09 62.78 0.72 6 
92.53 85.13 143.74 90.33 134.63 72.84 72.71 72.64 13.35 70.50 0.65 6 
99.24 89.46 146.92 94.42 138.41 77.74 77.62 77.49 17.05 78.94 0.58 6 

106.15 94.39 149.82 98.79 142.67 83.00 82.93 82.72 21.20 88.11 0.55 6 
113.34 99.98 152.68 103.61 147.45 88.62 88.65 88.34 25.81 98.01 0.69 6 
120.90 106.28 155.79 109.06 152.81 94.61 94.76 94.34 30.89 108.71 0.95 6 
128.96 113.32 159.51 115.31 158.76 100.96 101.27 100.75 36.48 120.26 1.30 6 
137.70 121.14 164.24 122.52 165.36 107.71 108.17 107.58 42.63 132.78 1.70 6 
147.33 129.78 170.37 130.83 172.70 114.89 115.47 114.85 49.42 146.43 2.15 6 
158.12 139.30 178.29 140.39 180.95 122.54 123.22 122.62 57.00 161.36 2.66 6 
170.36 149.80 188.31 151.34 190.35 130.74 131.45 130.95 65.55 177.79 3.24 6 
184.37 161.45 200.71 163.83 201.24 139.57 140.23 139.90 75.34 195.90 3.90 6 
200.46 174.45 215.64 178.08 214.04 149.15 149.65 149.59 86.75 215.85 4.64 6 
218.94 189.08 233.20 194.30 229.18 159.59 159.83 160.13 100.32 237.69 5.49 6 
240.01 205.65 253.40 212.74 247.09 171.05 170.91 171.66 116.80 261.32 6.44 6 
263.72 224.50 276.10 233.65 268.10 183.70 183.05 184.35 137.22 286.42 7.51 6 
289.88 245.91 301.11 257.19 292.34 197.69 196.40 198.34 163.00 312.50 8.71 6 
318.04 270.09 328.08 283.42 319.68 213.16 211.13 213.78 195.83 338.90 10.04 6 
347.53 297.06 356.66 312.20 349.72 230.21 227.35 230.76 237.22 364.96 11.51 6 
377.59 326.69 386.48 343.21 381.85 248.91 245.18 249.35 287.32 390.12 13.09 6 
407.55 358.65 417.30 375.98 415.42 269.22 264.63 269.51 343.67 414.08 14.77 6 
437.01 392.54 449.11 409.98 449.92 291.05 285.66 291.15 402.02 436.95 16.52 6 
465.98 427.95 482.08 444.77 485.08 314.18 308.13 314.05 459.45 459.34 18.31 6 
494.84 464.70 516.65 480.14 520.96 338.37 331.87 337.99 516.61 482.35 20.14 6 
524.33 502.87 553.40 516.16 557.87 363.38 356.69 362.72 576.30 507.37 22.05 6 
555.43 542.78 592.85 553.09 596.21 389.01 382.45 388.06 640.35 535.85 24.07 6 
589.08 584.85 635.16 591.30 636.21 415.08 409.02 413.86 707.36 568.92 26.22 6 
625.92 629.29 679.90 631.02 677.78 441.40 436.20 439.94 774.28 607.06 28.47 6 
666.00 675.97 726.06 672.24 720.49 467.74 463.77 466.09 840.77 649.84 30.79 6 
753.67 773.91 818.47 758.47 807.56 519.69 519.17 517.89 988.16 743.89 35.71 6 



www.manaraa.com

70 

Table 5.4: Fault at bus 996, Case4, = 0.0885, both angle and speed components 

^i.n ^2,n ^3.11 ^4.11 ^5,11 ^6,11 ^7,11 <^8,11 "^9.11 ^10,11 Dist # 
deg deg deg deg deg deg deg deg deg deg rad 

34.83 37.03 68.40 30.67 68.36 42.50 44.42 42.70 -2.73 24.36 6.03 10 
37.44 42.93 76.47 36.45 78.38 43.43 45.19 43.67 -2.62 25.10 5.84 10 
40.38 48.39 84.41 42.23 87.62 44.50 46.08 44.78 -2.42 26.14 5.60 10 
43.74 53.34 92.15 47.96 95.82 45.79 47.18 46.08 -2.10 27.58 5.39 10 
47.60 57.77 99.64 53.58 102.90 47.34 48.53 47.63 -1.61 29.55 5.28 10 
51.94 61.73 106.81 59.02 108.88 49.21 50.19 49.48 -0.91 32.12 5.20 6 
56.75 65.29 113.62 64.23 113.89 51.43 52.19 51.66 0.05 35.37 5.12 6 
61.99 68.55 120.00 69.17 118.09 54.03 54.56 54.20 1.31 39.34 5.15 6 
67.59 71.63 125.87 73.82 121.71 57.01 57.35 57.12 2.91 44.06 5.28 6 
73.50 74.69 131.20 78.20 124.96 60.39 60.55 60.42 4.89 49.54 5.51 6 
79.65 77.87 135.95 82.35 128.06 64.16 64.17 64.11 7.28 55.78 5.82 6 
86.00 81.30 140.11 86.36 131.23 68.31 68.23 68.18 10.09 62.78 6.21 6 
92.53 85.13 143.74 90.33 134.63 72.84 72.71 72.64 13.35 70.50 6.68 6 
99.24 89.46 146.92 94.42 138.41 77.74 77.62 77.49 17.05 78.94 7.22 6 

106.15 94.39 149.82 98.79 142.67 83.00 82.93 82.72 21.20 88.11 7.84 6 
113.34 99.98 152.68 103.61 147.45 88.62 88.65 88.34 25.81 98.01 8.55 6 
120.90 106.28 155.79 109.06 152.81 94.61 94.76 94.34 30.89 108.71 9.35 6 
128.96 113.32 159.51 115.31 158.76 100.96 101.27 100.75 36.48 120.26 10.26 18 
137.70 121.14 164.24 122.52 165.36 107.71 108.17 107.58 42.63 132.78 11.32 18 
147.33 129.78 170.37 130.83 172.70 114.89 115.47 114.85 49.42 146.43 12.57 18 
158.12 139.30 178.29 140.39 180.95 122.54 123.22 122.62 57.00 161.36 14.07 18 
170.36 149.80 188.31 151.34 190.35 130.74 131.45 130.95 65.55 177.79 15.84 18 
184.37 161.45 200.71 163.83 201.24 139.57 140.23 139.90 75.34 195.90 17.93 18 
200.46 174.45 215.64 178.08 214.04 149.15 149.65 149.59 86.75 215.85 20.35 18 
218.94 189.08 233.20 194.30 229.18 159.59 159.83 160.13 100.32 237.69 23.08 18 
240.01 205.65 253.40 212.74 247.09 171.05 170.91 171.66 116.80 261.32 26.12 18 
263.72 224.50 276.10 233.65 268.10 183.70 183.05 184.35 137.22 286.42 29.41 18 
289.88 245.91 301.11 257.19 292.34 197.69 196.40 198.34 163.00 312.50 32.94 18 
318.04 270.09 328.08 283.42 319.68 213.16 211.13 213.78 195.83 338.90 36.67 18 
347.53 297.06 356.66 312.20 349.72 230.21 227.35 230.76 237.22 364.96 40.48 18 
377.59 326.69 386.48 343.21 381.85 248.91 245.18 249.35 287.32 390.12 43.95 18 
407.55 358.65 417.30 375.98 415.42 269.22 264.63 269.51 343.67 414.08 46.44 18 
437.01 392.54 449.11 409.98 449.92 291.05 285.66 291.15 402.02 436.95 47.91 18 
465.98 427.95 482.08 444.77 485.08 314.18 308.13 314.05 459.45 459.34 49.19 18 
494.84 464.70 516.65 480.14 520.96 338.37 331.87 337.99 516.61 482.35 51.18 18 
524.33 502.87 553.40 516.16 557.87 363.38 356.69 362.72 576.30 507.37 54.17 18 
555.43 542.78 592.85 553.09 596.21 389.01 382.45 388.06 640.35 535.85 57.71 18 
589.08 584.85 635.16 591.30 636.21 415.08 409.02 413.86 707.36 568.92 60.99 18 
625.92 629.29 679.90 631.02 677.78 441.40 436.20 439.94 774.28 607.06 63.82 18 
666.00 675.97 726.06 672.24 720.49 467.74 463.77 466.09 840.77 649.84 66.66 18 
753.67 773.91 818.47 758.47 807.56 519.69 519.17 517.89 988.16 743.89 73.30 18 
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Tables 5.1, 5.2, 5.3 and 5.4 present data for the postfault trajectories for a fault 

at bus # 996 and loading Case4 for different fault clearing times, Tables 5.1 and 

5.3 give only angle components of the trajectory and the boundary, whereas Tables 

5.2, and 5.4 correspond to the computation which considers both eingle and speed 

components of the trajectory and the boundary. In Table 5.1, it is seen that the 

faulted trajectory probably crosses manifold 9 (the Euclidean distance is minimum 

at 0.09) if only cingles axe taken into calculation. But, when both the speed and 

angle axe considered, the minimum Euclidean distance shows that the trajectory 

leaves at manifold 6, as seen in Table 5.2. Manifold 6 corresponds to the stable 

real eigenvalue. For = 0.088s, the trajectory leaves or comes close to manifold 

6 as shown in Tables 5.3 and 5.4. This shows that stability boundary only in angle 

subspace can be different from the stability boundary in the angle and speed space. 

Chiang et al [38] also proposed the prediction of the unstable mode of a power 

system due to a fault cleared immediately after the critical clearing time using the 

unstable manifold of the controlling UEP. The unstable manifold of the controlling 

UEP is computed integrating the postfault system. But, the unstable manifold is 

computed in this dissertation using the real normal form of the vector fields. 

5.3 Summary 

This chapter presents a conceptual framework to study machine sepeiration from 

the system using the approximate boundary and the postfault system trajectory. 

Both the graphical and numerical approaches are discussed. The concept is explained 

with examples and is applied to the 11 generator test system. It is observed that the 

trajectory leaves at different edges of the boundary depending on the clearing time, 
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as depicted in Figure 5.1. If the system trajectory leaves fcir away from the control­

ling UEP, the 2"*^ approximation of the stability boundary may not be sufficient to 

implement this scheme to study the mode of system instability, as seen in Figure 5.1. 
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6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

6.1 Conclusions 

6.1.1 The goal 

The goal of this dissertation is to understand aad explain better the nonlinear 

phenomena of stressed power systems. Specific objectives are: 

• To approximate the stability boundary of a SEP of a power system around the 

controlling UEP. 

• To study the shape of the stability boundary and the region of attraction of 

the SEP. 

• To analyze certain attributes of the stability boundary (e.g., curvature, poten­

tial energy etc.). 

• To study how system trajectory approaches (or behaves near) the boundary. 

• To study generators' separation from the system. 

6.1.2 The approach 

To address the above mentioned problems the following approach is followed: 
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• Real normal form formulation is proposed and implemented. 

• To study the shape of the boundary under different stress conditions, a general 

computer program is developed. The program does the following tasks: 

1. Considers classical representation of the machines in a synchronous refer­

ence frame with the machine taken as reference. 

2. Computes the Jacobian and Hessiaji matrices at the controlling UEP. 

3. Performs linear analysis of the system by computing the eigenvalues and 

eigenvectors. 

4. Does the real Jordan form transformation to linear, and second order 

terms. 

J 
5. Applies real 2 order normal form transformation to the Jordan system. 

6. Displays the approximate stability boundary for different stress conditions 

to arbitrary 2 or 3 dimensional subspaces. 

7. Displays how the faulted trajectories approach the boundary. 

8. Calculates the norm-2 distance between the postfault SEP and points on 

the stable manifolds. 

9. Computes the potential energy on the stable manifolds. 

• Used a test system under different conditions of system stress. 

• Obtained results for certain conditions. 

6.1.3 Important findings of this work 

The important results obtained are: 
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The relation between the system stress, due to loading at critical generators, 

and the boundary of the region of stability has been shown graphically. 

The shape of the region of attraction of postfault SEPs of a power system for 

different degrees of stress due to loading at the critical generators has also been 

displayed and analyzed. 

It has been found that the chcinge in magnitude of nonlinear coefficients, h2r 

with increase in stress due to loading is not uniform in all the directions. 

The behavior of the system trajectory near the UEP and as it leaves the bound­

ary is displayed. It is depicted that when a faulted trajectory leaves the region 

of attraction, it follows the unstable manifold of the UEP. 

The real eigenvalue of the system at the controlling UEP decrecises with the 

increase in system stress. 

The effect of stress on eigenvalues, h2r, F due to the removal of more lines at 

fault clearing is found to have less effect than the stress due to loading at least 

for this 11 generator test system. 

It has been shown that the stability region shrinks with stress, and that the 

SEP and UEP tend to come close to each other. At higher stress the SEP and 

UEP may combine and the SEP disappears. 

Potential energy on the approximate boundary is also computed. It is observed 

that except along the directions of the manifolds associated with real eigenval­

ues, the potential energy is almost constant in all directions around the UEP 

at lower stress but changes appreciably at higher stress. 
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• A conceptual framework for the study of the mode of system separation us­

ing the approximate stability boundary and the postfault system trajectory is 

presented. 

• It is seen that the stability boundciry as seen when projected in the angle 

subspace alone can be different from that of the boundary seen in the angle 

and speed space. 

• It is observed that the postfault system trajectory leaves at different edges of 

the boundary depending on the fault clearing time. 

6.2 Suggestions for Future Work 

The following suggestions are made for further research work: 

1. Analytic sensitivity analysis of the shape of the boundary with system stress. 

2. The homological operator, La is spairse. For a large system, the sparsity of La 

can be used for efficient computation of h2r coefficients. 

3. Consideration of order terms in Taylor's series and consequently Z^*^ or­

der normal form transformation can be used to extend the stability boundary 

further away from the UEP. 

4. For practical application for a larger system, efficient computer coding needs 

to be exploited. 

5. It has been observed that at increased stress the SEP and the UEP tend to 

come close together and possibly coalesce. This phenomenon needs further 

investigation. 
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APPENDIX A. JACOBIAN AND HESSIAN MATRICES 

A.l Jacobian Matrix 

The system is given by the following equations: 

^in = ^in i=l,n-l 

'^in = 777 {Pmi ~ [Prnn - E^Gnn) 
n 

M: 

n—1 

M, n 

(^6i^ ^in) "f" ^2 ^jn ^ij) 
j=lj^i 

n—1 

{.^jn ^jn) 
L i 

— ojJin z = l,...,n—1 (A.l) 

The above 2(n — 1) equations can be written as vectors: 

S = ^ 

fk = fii) - c w (A.2) 

where S and w are (n — 1) vectors of the relative angles and relative speeds a;^^. 

The Jacobian matrix of the above system has the following form: 

Q / 

J -cl 

where 0 and 7 are the (n — 1) x (n — 1) zero and unity matrices respectively and 
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(A.3) 

The diagonal elements of J are: 

J- = 
Mi 

n—1 

j=l,jyz 
1 

"'" ^in) (A.4) 

and the off-diagonal elements are: 

'^ij ~ ~ ^jn ~ ̂ ij) ~ "I" ^jn) (•^•5) 

where, Aij = EiEjYij. 

A.2 Hessian Matrices 

The Hessian matrices of fi{S) is denoted by and is defined as 

W = 
aVi(a j = 1,.., n — 1, k = 1,.., n — 1 Vz (A.6) 

d-im 1 

af? in 
M: 

n—1 
^zn) "I" ^ ^jn ^ij) 

•^in ^m) ^ ~ ••'" ^ (A.7) 

For z 7^ 

d'^m) 1 , c . ̂ 
9^inhn 2-l,..,n 1 (A.8) 
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For i ^ k 

d^fi{£) _ ^ik _ S:. a..\ 

asl - Mi 

And for i ^ j, j k, k ^ i 

- hn - ̂ik) - -J^ + ̂ jt„) i = 1,.., n - 1 (A.9) 
kn ^ " 

= 0 (A.10) 
^°jnhn 
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APPENDIX B. DATA FOR 11 GENERATOR TEST SYSTEM 

B.l Dynamic Data for 11 Generator Test System 

The inertia constants, H and direct aocis transient reactance on 100 MVA base of the 

9 M 11 generator test system are given in Table B.l. M and H are related as, M = 

Table B.l: H  and x ^ f  

Bus # ^(sec) x^r 
54 241.000 0.00393 

458 74.400 0.01280 
733 73.850 0.01220 
784 28.140 0.06233 
968 73.850 0.01220 
975 57.520 0.04803 
991 115.040 0.02402 

1001 105.792 0.01797 
2001 109.960 0.00848 
2018 207.230 0.00451 
2192 9344.170 0.00010 

B.2 Load Flow Data for 11 Generator Test System 

Tables B.2 and B.3 provide bus and branch data for 11 generator test system. 
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Table B.2: 11 generator bus data 

Serial Bus Vol Mag Vol Angle ^load ^load Pgen Qgen 

# # p.u. Deg MW MVAR MW MVAR 
1 3 1.0740 19.06 -4.85 -90.83 0.00 0.00 
2 5 1.0829 19.50 250.39 480.10 0.00 0.00 
3 7 1.0929 19.52 228.02 77.17 0.00 0.00 
4 8 1.0693 21.76 6.35 221.21 0.00 0.00 
5 24 1.0826 12.97 341.12 244.28 0.00 0.00 
6 30 1.1331 10.69 432.69 111.05 0.00 0.00 
7 33 1.1384 15.38 497.84 -88.98 0.00 0.00 
8 37 1.1505 20.99 235.69 -12.89 0.00 0.00 
9 39 1.1520 23.01 43.70 -6.79 0.00 0.00 

10 40 1.1519 22.99 43.80 -6.88 0.00 0.00 
11 43 1.1330 22.56 45.88 3.64 0.00 0.00 
12 44 1.1344 22.42 45.87 3.64 0.00 0.00 
13 47 1.1231 24.01 945.23 -374.91 0.00 0.00 
14 48 1.1391 31.59 71.72 186.88 0.00 0.00 
15 54 1.0909 30.20 4114.20 1365.20 6357.47 1814.30 
16 80 1.0532 17.66 920.78 -75.58 0.00 0.00 
17 140 1.1491 21.19 18.08 10.25 0.00 0.00 
18 141 1.1491 21.19 17.98 10.22 0.00 0.00 
19 142 1.1469 22.08 19.72 13.77 0.00 0.00 
20 143 1.1469 22.08 19.70 13.80 0.00 0.00 
21 144 1.1478 23.19 40.54 30.29 0.00 0.00 
22 145 1.1639 31.60 30.77 -3.79 0.00 0.00 
23 146 1.1639 31.60 30.86 -3.81 0.00 0.00 
24 148 1.1456 20.17 17.18 9.37 0.00 0.00 
25 149 1.1456 720.17 17.18 9.37 0.00 0.00 
26 150 1.1461 719.51 233.50 31.41 0.00 0.00 
27 226 1.1813 37.34 0.00 0.00 0.00 0.00 
28 288 1.1733 34.15 52.18 -3.29 0.00 0.00 
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Table B.2 (Continued) 

29 297 1.1183 16.37 2049.10 -667.91 0.00 0.00 
30 458 1.0667 24.63 644.56 285.91 1669.37 106.74 
31 617 1.1606 30.75 38.70 2.76 0.00 0.00 
32 618 1.1608 30.78 38.66 2.74 0.00 0.00 
33 644 1.0749 13.73 115.54 -537.09 0.00 0.00 
34 733 1.0000 39.04 31.64 20.00 1999.20 161.66 
35 784 1.0000 15.64 887.73 926.25 500.00 329.43 
36 963 1.0521 19.58 0.00 0.00 0.00 0.00 
37 967 1.0766 32.18 -8.41 -156.82 0.00 0.00 
38 968 1.0000 37.42 31.64 20.00 1999.20 673.16 
39 975 1.0000 37.98 28.00 29.00 100.00 21.77 
40 977 1.1841 36.21 22.10 -7.04 0.00 0.00 
41 989 1.0987 40.34 0.00 0.00 0.00 0.00 
42 991 1.0000 40.90 57.00 59.00 200.00 123.41 
43 992 1.1813 36.88 0.00 0.00 0.00 0.00 
44 993 1.0495 19.45 193.17 378.30 0.00 0.00 
45 994 1.0495 19.45 190.93 374.18 0.00 0.00 
46 996 1.0536 18.80 -7.12 -107.08 0.00 0.00 
47 1000 1.0989 40.47 0.00 0.00 0.00 0.00 
48 1001 1.0000 44.47 360.00 360.00 1300.00 459.43 
49 1060 1.1785 37.16 2.73 2.12 0.00 0.00 
50 1106 0.9883 14.27 184.83 199.34 0.00 0.00 
51 2001 0.9664 4.23 2632.00 498.53 2827.60 141.27 
52 2018 1.0895 26.35 4244.60 805.48 5329.50 1777.66 
53 2192 1.0340 14.05 235100.00 62413.00 241884.73 63475.55 
54 2317 1.0600 -5.54 8783.70 -517.70 0.00 0.00 
55 2325 1.0695 9.38 471.40 -151.14 0.00 0.00 
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Table B.3: 11 generator line data 

From Bus To Bus R, p.u X,p.u. B, p.u OfF-nominal tap 
3 5 0.003520 0.036720 3.45154 0.0000 
3 5 0.003390 0.036690 3.45813 0.0000 
3 150 0.000300 0.018200 0.00000 0.9259 
3 150 0.000300 0.020300 0.00000 0.9259 
3 996 0.000960 0.009080 0.85556 0.0000 
3 996 0.000960 0.009080 0.85556 0.0000 
5 7 0.002280 0.027560 2.62024 0.0000 
5 458 0.000640 0.034460 0.00000 1.0000 
7 8 0.001730 0.020750 1.96472 0.0000 
7 458 0.041050 0.393870 0.00000 1.0000 
8 458 0.001280 0.026470 0.00000 1.0000 

24 30 0.003380 0.029770 0.00000 0.0000 
24 33 -0.052620 1.383430 0.00000 0.0000 
24 33 0.012920 0.112030 0.18075 0.0000 
24 33 0.012920 0.112050 0.18073 0.0000 
24 33 0.005740 0.060520 0.00000 0.0000 
24 644 0.000100 0.005460 0.00000 1.0000 
30 33 0.016010 0.099370 0.15627 0.0000 
30 33 0.016040 0.099390 0.15623 0.0000 
30 644 -0.001620 0.077330 0.00000 1.0000 
33 37 0.008120 0.078180 0.13190 0.0000 
33 37 0.008120 0.078180 0.13190 0.0000 
33 47 0.010010 0.098760 0.15844 0.0000 
33 47 0.003290 0.046510 0.00000 0.0000 
33 644 0.028260 0.461480 0.00000 1.0000 
37 39 0.005010 0.034670 0.05207 0.0000 
37 40 0.005010 0.034660 0.05207 0.0000 
37 43 0.002400 0.031800 0.05672 0.0000 
37 44 0.002400 0.031800 0.05671 0.0000 
37 140 0.001410 0.008720 0.01366 0.0000 
37 141 0.001410 0.008720 0.01366 0.0000 
39 40 0.030620 0.809460 0.00000 0.0000 
39 40 -0.035640 0.543650 0.00000 0.0000 
39 617 0.014490 0.113180 0.00000 0.0000 
39 618 0.000240 0.870170 0.00000 0.0000 
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40 617 0.000240 0.870170 0.00000 0.0000 
40 618 0.015110 0.115070 0.00000 0.0000 
43 44 -0.023140 0.377740 0.00000 0.0000 
43 47 0.001800 0.020100 0.03459 0.0000 
44 47 0.001800 0.024000 0.04222 0.0000 
47 48 0.003500 0.044490 0.07339 0.0000 
47 48 0.003500 0.044490 0.07339 0.0000 
47 48 0.002700 0.031800 0.11433 0.0000 
47 48 0.003520 0.044730 0.07386 0.0000 
47 48 0.003520 0.044730 0.07386 0.0000 
47 54 0.001540 0.023400 0.00000 1.0000 
47 80 0.021770 0.479680 0.00000 1.0000 
47 297 0.004330 0.039990 0.00000 1.0000 
47 458 0.032940 0.771160 0.00000 1.0000 
47 644 -0.168360 2.246910 0.00000 1.0000 
47 784 0.157880 1.518370 0.00000 1.0000 
47 784 0.059910 0.936860 0.00000 1.0000 
47 784 0.109310 1.701790 0.00000 1.0000 
47 993 0.000580 0.078940 0.00000 1.0000 
47 994 0.000560 0.079840 0.00000 1.0000 
47 1106 0.157990 1.520600 0.00000 1.0000 
47 2018 -0.017990 0.445020 0.00000 1.0000 
47 2317 -1.056490 4.386920 0.00000 1.0000 
48 733 0.000600 0.025700 0.00000 1.1435 
48 733 0.000600 0.026500 0.00000 1.1435 
48 733 0.000600 0.026500 0.00000 1.1435 
48 733 0.000600 0.026500 0.00000 1.1435 

967 48 0.000300 0.018100 0.00000 0.9167 
967 48 0.000300 0.016300 0.00000 0.9167 
54 80 -0.000780 0.076070 0.00000 1.0000 
54 297 0.005750 0.157510 0.00000 1.0000 
54 458 0.005910 0.739670 0.00000 1.0000 
54 644 -0.014740 0.096690 0.00000 1.0000 
54 784 0.002430 0.812190 0.00000 1.0000 
54 784 -0.002370 0.751970 0.00000 1.0000 
54 784 0.001210 0.447110 0.00000 1.0000 
54 993 -0.025040 0.528020 0.00000 1.0000 
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Table B.3 (Continued) 

54 994 -0.025450 0.534040 0.00000 1.0000 
54 1106 -0.002430 0.753070 0.00000 1.0000 
54 2001 -0.096710 0.419510 0.00000 1.0000 
54 2018 -0.002990 0.025740 0.00000 1.0000 
54 2192 -0.188400 0.877980 0.00000 1.0000 
54 2317 -0.115110 0.331850 0.00000 1.0000 
80 297 -0.000800 0.040080 0.00000 1.0000 
80 458 -0.031240 0.478100 0.00000 1.0000 
80 784 -0.004440 0.106330 0.00000 1.0000 
80 784 -0.004600 0.094580 0.00000 1.0000 
80 784 -0.002460 0.058540 0.00000 1.0000 
80 993 -0.031210 0.659410 0.00000 1.0000 
80 994 -0.031730 0.666930 0.00000 1.0000 
80 996 0.000530 0.005840 0.60400 0.0000 
80 996 0.000530 0.005840 0.60400 0.0000 
80 1106 -0.004610 0.094720 0.00000 1.0000 
80 2018 -0.056810 0.548510 0.00000 1.0000 

140 141 -0.062300 0.927530 0.00000 0.0000 
140 142 0.004780 0.029280 0.04586 0.0000 
141 143 0.004780 0.029280 0.04586 0.0000 
142 143 -0.005500 0.383150 0.00000 0.0000 
142 144 0.004670 0.028850 0.04519 0.0000 
143 144 0.004670 0.028850 0.04519 0.0000 
144 145 0.008950 0.077910 0.12311 0.0000 
144 146 0.008950 0.077910 0.12311 0.0000 
144 148 0.007590 0.048320 0.07128 0.0000 
144 149 0.007590 0.048320 0.07128 0.0000 
145 146 -0.005010 0.208210 0.00000 0.0000 
145 226 0.005640 0.050370 0.07944 0.0000 
145 288 0.085750 0.568540 0.00000 0.0000 
146 226 0.005640 0.050370 0.07944 0.0000 
146 288 0.085500 0.567040 0.00000 0.0000 
148 149 -0.002830 0.382420 0.00000 0.0000 
148 150 0.001880 0.011980 0.01769 0.0000 
149 150 0.001880 0.011980 0.01769 0.0000 
150 288 0.066340 0.555860 0.00000 0.0000 
150 297 0.028270 0.247970 0.00000 0.0000 
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150 458 0.014190 0.155890 0.00000 1.0000 
226 288 0.009950 0.063350 0.11046 0.0000 
226 617 0.007650 0.071990 0.10050 0.0000 
226 618 0.007650 0.072000 0.10050 0.0000 
226 975 0.000240 0.015630 0.00000 1.1801 
226 977 0.009950 0.070690 0.11169 0.0000 
989 226 0.000300 0.017900 0.00000 0.9259 
989 226 0.000300 0.017900 0.00000 0.9259 
989 226 0.000300 0.017900 0.00000 0.9259 
226 992 0.000200 0.021800 0.00000 0.0000 
226 992 0.000200 0.022000 0.00000 0.0000 
226 992 0.000180 0.022150 0.00000 0.0000 
226 1060 0.000000 0.158000 0.00000 0.0000 
288 977 -0.005660 0.325930 0.00000 0.0000 
297 458 -0.000120 0.050630 0.00000 1.0000 
297 784 0.004860 0.127190 0.00000 1.0000 
297 784 -0.000120 0.078270 0.00000 1.0000 
297 784 -0.000180 0.142180 0.00000 1.0000 
297 993 0.000830 0.055210 0.00000 1.0000 
297 994 0.000820 0.055840 0.00000 1.0000 
996 297 0.000300 0.019200 0.00000 0.9167 
996 297 0.000300 0.018800 0.00000 0.9167 
996 297 0.000300 0.019200 0.00000 0.9167 
297 1106 0.004860 0.127370 0.00000 1.0000 
297 2018 -0.266020 2.781220 0.00000 1.0000 
458 784 -0.026010 1.432810 0.00000 1.0000 
458 784 -0.072710 2.173670 0.00000 1.0000 
458 784 -0.014540 0.788760 0.00000 1.0000 
458 993 -0.053110 1.057950 0.00000 1.0000 
458 994 -0.053970 1.070020 0.00000 1.0000 
458 1106 -0.072990 2.176840 0.00000 1.0000 
617 618 -0.034810 0.934120 0.00000 0.0000 
617 618 0.012240 0.597670 0.00000 0.0000 
644 2001 -0.414030 1.712200 0.00000 1.0000 
644 2018 -0.050240 0.272610 0.00000 1.0000 
644 2192 -0.000560 0.005790 0.00000 1.0000 
644 2317 -0.057280 0.242950 0.00000 1.0000 
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784 993 0.022650 2.095820 0.00000 1.0000 
784 993 -0.037310 1.288360 0.00000 1.0000 
993 784 -0.067110 2.340360 0.00000 1.0000 
784 994 0.022410 2.119770 0.00000 1.0000 
784 994 -0.038040 1.303070 0.00000 1.0000 
994 784 -0.068440 2.367080 0.00000 1.0000 
784 1106 0.000790 0.178760 0.00000 0.0000 
784 1106 -0.079710 0.777450 0.00000 1.0000 
784 1106 -0.144390 1.412310 0.00000 1.0000 
963 967 0.001290 0.013850 1.46527 0.0000 
963 993 0.000160 0.001680 0.17525 0.0000 
963 994 0.000160 0.001680 0.17529 0.0000 
963 996 0.000190 0.002030 0.87993 0.0000 
963 996 0.000190 0.002030 0.87993 0.0000 
967 968 0.000100 0.018100 0.00000 1.1053 
967 968 0.000100 0.018100 0.00000 1.1053 
967 968 0.000100 0.018100 0.00000 1.1053 
967 968 0.000100 0.018100 0.00000 1.1053 
989 991 0.000240 0.013740 0.00000 1.1037 
989 991 0.000240 0.013680 0.00000 1.1037 
989 992 -0.008600 0.165790 0.00000 0.9259 
989 992 -0.008700 0.167400 0.00000 0.9259 
989 992 -0.008990 0.171790 0.00000 0.9259 
989 1000 0.000030 0.000580 0.06315 0.0000 
989 1000 0.000030 0.000580 0.06315 0.0000 
993 994 -0.009390 0.109190 0.00000 0.0000 
993 1106 0.022530 2.098890 0.00000 1.0000 
994 1106 0.022280 2.122870 0.00000 1.0000 

1000 1001 0.000180 0.014770 0.00000 1.1053 
1000 1001 0.000180 0.014770 0.00000 1.1053 
2001 2018 -0.014240 0.070820 0.00000 1.0000 
2001 2192 -0.160380 0.650650 0.00000 1.0000 
2001 2317 -0.005240 0.021160 0.00000 1.0000 
2018 2192 -0.654290 2.050080 0.00000 1.0000 
2018 2317 -0.020600 0.064670 0.00000 1.0000 
2192 2317 -0.001120 0.005620 0.00000 1.0000 
2192 2325 -0.002450 0.019870 0.00000 1.0000 
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